Skip to main content

A Smart Grid in Container Terminals: Cost Drivers for Using the Energy Storage of Electric Transport Vehicles for Grid Stability

  • Chapter
  • First Online:
Maritime Informatics

Abstract

The shift from conventional fuel-powered vehicles to electric vehicles is one possible step for a sustainable transformation in the logistics sector, such as at container terminals, where heavy-duty vehicles are essential for container transportation. Through the use of information systems, this field is a promising area for a smart grid application, where the batteries of idle vehicles can be used during less busy times to provide capacity for the energy grid. The need for energy reserves has increased with the integration of intermittent renewable energy sources, which cannot provide a stable power supply. The research in this chapter provides an overview of the cost drivers for a smart electrified container terminal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babin, A., Rizoug, N., Mesbahi, T., Boscher, D., Hamdoun, Z., & Larouci, C. (2018). Total cost of ownership improvement of commercial electric vehicles using battery sizing and intelligent charge method. IEEE Transactions on Industry Applications, 54(2), 1691–1700.

    Article  Google Scholar 

  • BESIC-Konsortium. (2016). Batterie-Elektrische Schwerlastfahrzeuge Im Intelligenten Containerterminalbetrieb (BESIC). Abschlussbericht Im Rahmen Des Förderprogramms IKT Für Elekromobilität II, Hamburg.

    Google Scholar 

  • Corbett, J. (2011). Demand management in the smart grid: An information processing perspective. In 17th AMCIS Proceedings (pp. 1–8).

    Google Scholar 

  • Ellram, L. (1993). Total cost of ownership: Elements and implementation. International Journal of Purchasing and Materials Management, 4(9), 3–11.

    Google Scholar 

  • Ellram, L. (1994). A taxonomy of total cost of ownership models. Journal of Business Logistics, 15(1), 171.

    Google Scholar 

  • Ellram, L., & Siferd, S. P. (1993). Purchasing: The cornerstone of the total cost of ownership concept. Journal of Business Logistics, 14(1), 163.

    Google Scholar 

  • Ferrin, B. G., & Plank, R. E. (2002). Total cost of ownership models: An exploratory study. Journal of Supply Chain Management, 38(2), 18–29. https://doi.org/10.1111/j.1745-493X.2002.tb00132.x.

    Article  Google Scholar 

  • Frauenhofer ISE. (2019). Renewable sources contribute more than 40 percent to Germany’s public net electricity generation in 2018. Frauenhofer ISE (pp. 4–8).

    Google Scholar 

  • Greve, M., Harnischmacher, C., Lichtenberg, S., & Kolbe, L. M. (2019). Smart grid in container terminals – Systematization of cost drivers for using battery capacities of electric transport vehicles for grid stability. 25th Americas Conference on Information Systems, AMCIS 2019, July 8. Retrieved from https://aisel.aisnet.org/amcis2019/green_is_sustain/green_is_sustain/3

  • Harmelink, M., Voogt, M., & Cremer, C. (2006). Analysing the effectiveness of renewable energy supporting policies in the European Union. Energy Policy, 34(3), 343–351.

    Article  Google Scholar 

  • Johnson, G., Scholes, K., & Sexty, R. W. (1989). Exploring strategic management. Canada: Prentice-Hall.

    Google Scholar 

  • Kahlen, M., Ketter, W., & van Dalen, J. (2014). Balancing with electric vehicles: A profitable business model. In Twenty Second European Conference on Information Systems (pp. 1–15). Retrieved from http://ecis2014.eu/E-poster/files/0653-file1.pdf

  • Kemme, N. (2013). Design and operation of automated container storage systems. In Contributions to management science (pp. 1–456). Heidelberg: Physica-Verlag HD.

    Google Scholar 

  • Lebeau, P., Macharis, C., Van Mierlo, J., & Lebeau, K. (2013). Electric vehicles for logistics: A total cost of ownership analysis. In 2013 World Electric Vehicle Symposium and Exhibition (EVS27) (Vol. 6, pp. 307–318). IEEE.

    Google Scholar 

  • Moore, G. A. (2001). Crossing the chasm – Marketing and selling high-tech products to mainstream customers. Control (Chicago, IL).

    Google Scholar 

  • Rapaccini, M., Porcelli, I., Saccani, N., Cinquini, L., & Lugarà, A. (2013). LCCA and TCO: A how-to approach to assess the costs in the customer’s eye. In The philosopher’s stone for sustainability (pp. 405–410). Berlin: Springer.

    Chapter  Google Scholar 

  • REN21. (2019). Renewables 2019 Gloabl Status Report.

    Google Scholar 

  • Schmidt, J., Eisel, M., Hildebrandt, B., & Kolbe, L. (2015). Applying demand response programs for electric vehicle fleets. In 21st ACMIS Proceedings (pp. 1–13).

    Google Scholar 

  • Smith, K., Neubauer, J., Wood, E., Jun, M., & Pesaran, A. (2013). Models for battery reliability and lifetime: Applications in design and health management (presentation). NREL (National Renewable Energy Laboratory).

    Google Scholar 

  • Steenken, D., Voß, S., & Stahlbock, R. (2005). Container terminal operation and operations research – A classification and literature review. In Container terminals and automated transport systems: Logistics control issues and quantitative decision support (pp. 3–49). https://doi.org/10.1007/3-540-26686-0_1

  • Taefi, T. T., Stütz, S., & Fink, A. (2017). Assessing the cost-optimal mileage of medium-duty electric vehicles with a numeric simulation approach. Transportation Research Part D: Transport and Environment, 56, 271–285.

    Article  Google Scholar 

  • Valentine-Urbschat, M., & Bernhart, W. (2009). Powertrain 2020 – The future drives electric. Roland Berger Strategy Consultants Report. In Roland Berger Strategy Consultants (Vol. 9).

    Google Scholar 

  • Watson, R. T., Boudreau, M.-C., & Chen, A. J. (2010). Information Systems and environmentally sustainable development: Energy informatics and new directions for the IS community. MIS Quarterly, 34(1), 23–38.

    Article  Google Scholar 

  • Wu, G., Inderbitzin, A., & Bening, C. (2015). Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments. Energy Policy, 80, 196–214.

    Article  Google Scholar 

Download references

Acknowledgements

The research and development project “Flexibilitätsmanagement und Regelenergiebereitstellung von Schwerlastfahrzeugen im Hafen” (FRESH) is funded by the German Federal Ministry of Economic Affairs and Energy (01ME8002D) in the context of the funding program “IKT für Elektromobilität II”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Harnischmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Harnischmacher, C., Greve, M., Brendel, A.B., Wulff, B., Kolbe, L.M. (2021). A Smart Grid in Container Terminals: Cost Drivers for Using the Energy Storage of Electric Transport Vehicles for Grid Stability. In: Lind, M., Michaelides, M., Ward, R., T. Watson, R. (eds) Maritime Informatics. Progress in IS. Springer, Cham. https://doi.org/10.1007/978-3-030-50892-0_13

Download citation

Publish with us

Policies and ethics