Skip to main content

Decision Agriculture

  • Chapter
  • First Online:
Signals in the Soil

Abstract

In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and crop growth are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi AZ, Islam N, Shaikh ZA, et al. (2014) A review of wireless sensors and networks’ applications in agriculture. Comput Stand Inter 36(2):263–270

    Google Scholar 

  2. Aggelopooulou K, Castrignanò A, Gemtos T, De Benedetto D (2013) Delineation of management zones in an apple orchard in Greece using a multivariate approach. Comput Electron Agric 90:119–130

    Google Scholar 

  3. Ajwa H, Trout T, Mueller J, Wilhelm S, Nelson S, Soppe R, Shatley D (2002) Application of alternative fumigants through drip irrigation systems. Phytopathology 92(12):1349–1355. https://doi.org/10.1094/phyto.2002.92.12.1349

    Google Scholar 

  4. Akyildiz IF, Stuntebeck EP (2006) Wireless underground sensor networks: research challenges. Ad Hoc Netw 4(6):669–686

    Google Scholar 

  5. Akyildiz IF, Vuran MC (2011) Wireless sensor networks (Advanced texts in communications and networking). Wiley, Hoboken

    Google Scholar 

  6. Bogena H, Huisman J, Meier H, Rosenbaum U, Weuthen A (2009) Hybrid wireless underground sensor networks: quantification of signal attenuation in soil. Vadose Zone J 8(3):755–761

    Google Scholar 

  7. Bogena H, Herbst M, Huisman J, Rosenbaum U, Weuthen A, Vereecken H (2010) Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J 9(4):1002–1013

    Google Scholar 

  8. Brisco B, Brown R, Hirose T, McNairn H, Staenz K (1998) Precision agriculture and the role of remote sensing: a review. Can J Remote Sens 24(3):315–327

    Google Scholar 

  9. Bullock DS, Ruffo ML, Bullock DG, Bollero GA (2009) The value of variable rate technology: an information-theoretic approach. Am J Agric Econ 91(1):209–223

    Google Scholar 

  10. Christensen MG, Teicher HB, Streibig JC (2003) Linking fluorescence induction curve and biomass in herbicide screening. Pest Manag Sci (Formerly Pestic Sci) 59(12):1303–1310

    Google Scholar 

  11. Cock J, Oberthür T, Isaacs C, Läderach PR, Palma A, Carbonell J, Victoria J, Watts G, Amaya A, Collet L, et al. (2011) Crop management based on field observations: case studies in sugarcane and coffee. Agric Syst 104(9):755–769

    Google Scholar 

  12. Cook S, Cock J, Oberthür T, Fisher M, et al. (2013) On-farm experimentation. Better Crops Plant Food 97:17–20

    Google Scholar 

  13. Cosh M (2017) Ongoing research at the Marena, Oklahoma, in situ sensor testbed (MOISST). http://soilphysics.okstate.edu/research/moisst/2017-moisst-workshop/Cosh_MOISST_2017.pdf. 2017 MOISST Workshop

  14. Das J, Cross G, Qu C, Makineni A, Tokekar P, Mulgaonkar Y, Kumar V (2015) Devices, systems, and methods for automated monitoring enabling precision agriculture. In: Automation Science and Engineering (CASE), International Conference on 2015 IEEE. IEEE, New York, pp 462–469

    Google Scholar 

  15. Delgado B, Martínez M (2015) Software application for calculating solar radiation and equivalent evaporation in mobile devices. Agric Water Manage 151:30–36

    Google Scholar 

  16. Ding W, Engel W, Goode A, Santostasi G (2016) Declarative modeling cases of cyber physical systems. In: 2016 International conference on logistics, informatics and service sciences (LISS). IEEE, New York, pp 1–6

    Google Scholar 

  17. Dong X, Vuran MC (2010) Spatio-temporal soil moisture measurement with wireless underground sensor networks. In: 2010 the 9th IFIP Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net). IEEE, New York, pp 1–8

    Google Scholar 

  18. Dong X, Vuran MC (2011) A channel model for wireless underground sensor networks using lateral waves. In: 2011 IEEE Global Telecommunications Conference-GLOBECOM 2011. IEEE, New York, pp 1–6

    Google Scholar 

  19. Dong X, Vuran MC, Irmak S (2013) Autonomous precision agriculture through integration of wireless underground sensor networks with center pivot irrigation systems. Ad Hoc Netw 11(7):1975–1987

    Google Scholar 

  20. Dukes M, Simonne E, Davis W, Studstill D, Hochmuth R (2003) Length of irrigation and soil humidity as basis for delivering fumigants through drip lines in Florida spodosols. In: Proceedings of the Florida State Horticultural Society, vol 116, pp 85–87

    Google Scholar 

  21. El Nahry A, Ali R, El Baroudy A (2011) An approach for precision farming under pivot irrigation system using remote sensing and GIS techniques. Agric Water Manage 98(4):517–531

    Google Scholar 

  22. Entekhabi D, Njoku EG, O’Neill PE, Kellogg KH, Crow WT, Edelstein WN, Entin JK, Goodman SD, Jackson TJ, Johnson J, et al (2010) The soil moisture active passive (SMAP) mission. Proc IEEE 98(5):704–716. https://doi.org/10.1109/jproc.2010.2043918

    Google Scholar 

  23. FAO of the UN (2016) The State of Food and Agriculture 2016 (SOFA): climate change, agriculture and food security. FAO of the UN, available at: http://www.fao.org/3/a-i6030e.pdf

  24. Ferrández-Pastor FJ, García-Chamizo JM, Nieto-Hidalgo M, Mora-Pascual J, Mora-Martínez J (2016) Developing ubiquitous sensor network platform using internet of things: application in precision agriculture. Sensors 16(7):1141

    Google Scholar 

  25. Foley J (2014) Where will we find enough food for 9 billions. Nat Geograph 225(5):48–77

    Google Scholar 

  26. Franz TE, Wahbi A, Vreugdenhil M, Weltin G, Heng L, Oismueller M, Strauss P, Dercon G, Desilets D (2016) Using cosmic-ray neutron probes to monitor landscape scale soil water content in mixed land use agricultural systems. Applied and Environmental Soil Science 2016(5):1–11

    Google Scholar 

  27. Fridgen JJ, Kitchen NR, Sudduth KA, Drummond ST, Wiebold WJ, Fraisse CW (2004) Manage Zone Analyst (MZA). Agron J 96(1):100–108

    Google Scholar 

  28. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818

    Google Scholar 

  29. Guastaferro F, Castrignanò A, De Benedetto D, Sollitto D, Troccoli A, Cafarelli B (2010) A comparison of different algorithms for the delineation of management zones. Prec Agric 11(6):600–620

    Google Scholar 

  30. Gutiérrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gándara MÁ (2014) Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans Instrum Meas 63(1):166–176. 10.1109/TIM.2013.2276487

    Google Scholar 

  31. Haghverdi A, Leib BG, Washington-Allen RA, Ayers PD, Buschermohle MJ (2015) Perspectives on delineating management zones for variable rate irrigation. Comput Electron Agric 117:154–167

    Google Scholar 

  32. Hansen P, Schjoerring J (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553

    Google Scholar 

  33. Heege HJ (2013) Precision in Crop Farming: Site Specific Concepts and Sensing Methods: Applications and Results. Springer Science & Business Media, Dordrecht

    Google Scholar 

  34. Home | International Society of Precision Agriculture (2020). https://www.ispag.org/

  35. Hoornweg D, Munro-Faure P (2008) Urban agriculture for sustainable poverty alleviation and food security. Position paper, FAO Africa

    Google Scholar 

  36. Huang HM, Tidwell T, Gill C, Lu C, Gao X, Dyke S (2010) Cyber-physical systems for real-time hybrid structural testing: a case study. In: Proceedings of the 1st ACM/IEEE international conference on cyber-physical systems. ACM, pp 69–78

    Google Scholar 

  37. Hunter MC, Smith RG, Schipanski ME, Atwood LW, Mortensen DA (2017) Agriculture in 2050: recalibrating targets for sustainable intensification. BioScience 67(4):386–391. https://doi.org/10.1093/biosci/bix010

    Google Scholar 

  38. Kim KD, Kumar PR (2012) Cyber–physical systems: a perspective at the centennial. In: Proceedings of the IEEE 100(Special Centennial Issue), pp 1287–1308

    Google Scholar 

  39. Kitchen N, Sudduth K, Myers D, Drummond S, Hong S (2005) Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comput Electron Agric 46(1–3):285–308

    Google Scholar 

  40. Koch B, Khosla R, Frasier W, Westfall D, Inman D (2004) Economic feasibility of variable-rate nitrogen application utilizing site-specific management zones. Agron J 96(6):1572–1580

    Google Scholar 

  41. Konda A, Rau A, Stoller MA, Taylor JM, Salam A, Pribil GA, Argyropoulos C, Morin SA (2018) Soft microreactors for the deposition of conductive metallic traces on planar, embossed, and curved surfaces. Adv Funct Mater 28(40):1803020. https://doi.org/10.1002/adfm.201803020

    Google Scholar 

  42. Kopetz H (2011) Real-Time Systems: Design Principles for Distributed Embedded Applications. Real-Time Systems Series. Springer, New York. https://link.springer.com/content/pdf/10.1007%2F978-1-4419-8237-7.pdf

  43. Landrum C, Castrignanò A, Mueller T, Zourarakis D, Zhu J, De Benedetto D (2015) An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agric Water Manage 147:144–153

    Google Scholar 

  44. Lawrence PG, Rew LJ, Maxwell BD (2015) A probabilistic Bayesian framework for progressively updating site-specific recommendations. Prec Agric 16(3):275–296

    Google Scholar 

  45. Li L, Vuran MC, Akyildiz IF (2007) Characteristics of underground channel for wireless underground sensor networks. In: Proceedings of the Med-Hoc-Net, vol 7, pp 13–15

    Google Scholar 

  46. López-Riquelme J, Pavón-Pulido N, Navarro-Hellín H, Soto-Valles F, Torres-Sánchez R (2017) A software architecture based on FIWARE cloud for precision agriculture. Agric Water Manage 183:123–135. 10.1016/j.agwat.2016.10.020. https://doi.org/10.1016/j.agwat.2016.10.020

    Article  Google Scholar 

  47. Manos BD, Ciani A, Bournaris T, Vassiliadou I, Papathanasiou J (2004) A taxonomy survey of decision support systems in agriculture. Agric Econ Rev 5(389-2016-23416):80–94

    Google Scholar 

  48. McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of precision agriculture. Prec Agric 6(1):7–23

    Google Scholar 

  49. Meynard JM, Cerf M, Guichard L, Jeuffroy MH, Makowski D (2002) Which decision support tools for the environmental management of nitrogen? Agronomie 22:817–829

    Google Scholar 

  50. Miller-Struttmann NE, Heise D, Schul J, Geib JC, Galen C (2017) Flight of the bumble bee: buzzes predict pollination services. PloS One 12(6):e0179273

    Google Scholar 

  51. Molin JP, Castro CND (2008) Establishing management zones using soil electrical conductivity and other soil properties by the fuzzy clustering technique. Scientia Agricola 65(6):567–573

    Google Scholar 

  52. Monaghan JM, Daccache A, Vickers LH, Hess TM, Weatherhead EK, Grove IG, Knox JW (2013) More ‘crop per drop’: constraints and opportunities for precision irrigation in European agriculture. J Sci Food Agric 93(5):977–980

    Google Scholar 

  53. Moral F, Terrón J, Da Silva JM (2010) Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Tillage Res 106(2):335–343

    Google Scholar 

  54. Moran MS, Inoue Y, Barnes E (1997) Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens Environ 61(3):319–346

    Google Scholar 

  55. Mulla DJ (2013) Twenty five years of remote sensing in precision agriculture: key advances and remaining knowledge gaps. Biosyst Eng 114(4):358–371

    Google Scholar 

  56. Muñoz-Huerta RF, Guevara-Gonzalez RG, Contreras-Medina LM, Torres-Pacheco I, Prado-Olivarez J, Ocampo-Velazquez RV (2013) A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors 13(8):10823–10843

    Google Scholar 

  57. Ochsner TE, Cosh MH, Cuenca RH, Dorigo WA, Draper CS, Hagimoto Y, Kerr YH, Njoku EG, Small EE, Zreda M (2013) State of the art in large-scale soil moisture monitoring. Soil Sci Soc Am J 77(6):1888–1919

    Google Scholar 

  58. Panciera R, Walker JP, Jackson TJ, Gray DA, Tanase MA, Ryu D, Monerris A, Yardley H, Rudiger C, Wu X, et al (2014) The soil moisture active passive experiments (SMAPEx): toward soil moisture retrieval from the smap mission. IEEE Trans Geosci Remote Sens 52(1):490–507

    Google Scholar 

  59. Patzold S, Mertens FM, Bornemann L, Koleczek B, Franke J, Feilhauer H, Welp G (2008) Soil heterogeneity at the field scale: a challenge for precision crop protection. Prec Agric 9(6):367–390

    Google Scholar 

  60. Peralta NR, Costa JL, Balzarini M, Franco MC, Córdoba M, Bullock D (2015) Delineation of management zones to improve nitrogen management of wheat. Comput Electron Agric 110:103–113

    Google Scholar 

  61. Perlman UH (2020) The world’s water. https://water.usgs.gov/edu/earthwherewater.html

  62. Ping JL, Green CJ, Bronson KF, Zartman RE, Dobermann A (2005) Delineating potential management zones for cotton based on yields and soil properties. Soil Sci 170(5):371–385

    Google Scholar 

  63. Risinger M, Carver K (2020) Neutron moisture meters. http://sanangelo.tamu.edu/extension/agronomy/agronomy-publications/grain-sorghum-production-in-west-central-texas/how-to-estimate-soil-moisture-by-feel/soil-moisture-measuring-devices/neutron-moisture-meters/

  64. Roger-Estrade J, Richard G, Dexter A, Boizard H, De Tourdonnet S, Bertrand M, Caneill J (2009) Integration of soil structure variations with time and space into models for crop management. a review. Agron Sustain Develop 29(1):135–142

    Google Scholar 

  65. Salam A (2019) A comparison of path loss variations in soil using planar and dipole antennas. In: 2019 IEEE International Symposium on Antennas and Propagation. IEEE, New York

    Google Scholar 

  66. Salam A (2019) Design of subsurface phased array antennas for digital agriculture applications. In: Proceedings of the 2019 IEEE international symposium on phased array systems and technology (IEEE Array 2019), Waltham, MA

    Google Scholar 

  67. Salam A (2019) A path loss model for through the soil wireless communications in digital agriculture. In: 2019 IEEE international symposium on antennas and propagation. IEEE, New York, pp 1–2

    Google Scholar 

  68. Salam A (2019) Sensor-free underground soil sensing. In: ASA, CSSA and SSSA international annual meetings (2019). ASA-CSSA-SSSA

    Google Scholar 

  69. Salam A (2019) Subsurface MIMO: a beamforming design in internet of underground things for digital agriculture applications. J Sens Actuat Netw 8(3). https://doi.org/10.3390/jsan8030041. https://www.mdpi.com/2224-2708/8/3/41

  70. Salam A (2019) Underground environment aware MIMO design using transmit and receive beamforming in internet of underground things. Springer International Publishing, Cham, pp 1–15

    Google Scholar 

  71. Salam A (2019) An underground radio wave propagation prediction model for digital agriculture. Information 10(4). https://doi.org/10.3390/info10040147. http://www.mdpi.com/2078-2489/10/4/147

  72. Salam A (2019) An underground radio wave propagation prediction model for digital agriculture. Information 10(4):147

    Google Scholar 

  73. Salam A (2019) Underground soil sensing using subsurface radio wave propagation. In: 5th global workshop on proximal soil sensing, Columbia, MO

    Google Scholar 

  74. Salam A (2020a) Internet of Things for environmental sustainability and climate change. Springer International Publishing, Cham, pp 33–69. https://doi.org/10.1007/978-3-030-35291-2_2

    Google Scholar 

  75. Salam A (2020b) Internet of Things for sustainability: perspectives in privacy, cybersecurity, and future trends. Springer International Publishing, Cham, pp 299–327. https://doi.org/10.1007/978-3-030-35291-2_10

    Google Scholar 

  76. Salam A (2020c) Internet of Things for sustainable community development, 1st edn. Springer, New York. https://doi.org/10.1007/978-3-030-35291-2

  77. Salam A (2020d) Internet of Things for sustainable community development: introduction and overview. Springer International Publishing, Cham, pp 1–31. https://doi.org/10.1007/978-3-030-35291-2_1

    Google Scholar 

  78. Salam A (2020e) Internet of Things for sustainable forestry. Springer International Publishing, Cham, pp 147–181. https://doi.org/10.1007/978-3-030-35291-2_5

    Google Scholar 

  79. Salam A (2020f) Internet of Things for sustainable human health. Springer International Publishing, Cham, pp 217–242. https://doi.org/10.1007/978-3-030-35291-2_7

    Google Scholar 

  80. Salam A (2020g) Internet of Things for sustainable mining. Springer International Publishing, Cham, pp 243–271. https://doi.org/10.1007/978-3-030-35291-2_8

    Google Scholar 

  81. Salam A (2020h) Internet of Things for water sustainability. Springer International Publishing, Cham, pp 113–145. https://doi.org/10.1007/978-3-030-35291-2_4

    Google Scholar 

  82. Salam A (2020i) Internet of Things in agricultural innovation and security. Springer International Publishing, Cham, pp 71–112. https://doi.org/10.1007/978-3-030-35291-2_3

    Google Scholar 

  83. Salam A (2020j) Internet of Things in sustainable energy systems. Springer International Publishing, Cham, pp 183–216. https://doi.org/10.1007/978-3-030-35291-2_6

    Google Scholar 

  84. Salam A (2020k) Internet of Things in water management and treatment. Springer International Publishing, Cham, pp 273–298. https://doi.org/10.1007/978-3-030-35291-2_9

    Google Scholar 

  85. Salam A (2020l) Wireless underground communications in sewer and stormwater overflow monitoring: radio waves through soil and asphalt medium. Information 11(2):98

    Google Scholar 

  86. Salam A, Karabiyik U (2019) A cooperative overlay approach at the physical layer of cognitive radio for digital agriculture. In: Proceedings of the 3rd international Balkan conference on communications and networking (2019 BalkanCom), Skopje

    Google Scholar 

  87. Salam A, Shah S (2019) Internet of things in smart agriculture: enabling technologies. In: 2019 IEEE 5th world forum on Internet of Things (WF-IoT). IEEE, New York, pp 692–695

    Google Scholar 

  88. Salam A, Vuran MC (2016) Impacts of soil type and moisture on the capacity of multi-carrier modulation in internet of underground things. In: Proceedings of the 25th ICCCN 2016, Waikoloa, HI

    Google Scholar 

  89. Salam A, Vuran MC (2017a) Em-based wireless underground sensor networks, pp 247–285. https://doi.org/10.1016/B978-0-12-803139-1.00005-9

  90. Salam A, Vuran MC (2017b) Smart underground antenna arrays: a soil moisture adaptive beamforming approach. In: Proceedings of the IEEE INFOCOM 2017, Atlanta

    Google Scholar 

  91. Salam A, Vuran MC (2017c) Wireless underground channel diversity reception with multiple antennas for internet of underground things. In: Proceedings of the IEEE ICC 2017, Paris

    Google Scholar 

  92. Salam A, Vuran MC, Irmak S (2016) Pulses in the sand: impulse response analysis of wireless underground channel. In: The 35th Annual IEEE International Conference on Computer Communications (INFOCOM 2016), San Francisco

    Google Scholar 

  93. Salam A, Vuran MC, Irmak S (2017) Towards internet of underground things in smart lighting: a statistical model of wireless underground channel. In: Proceedings of the 14th IEEE International Conference on Networking, Sensing and Control (IEEE ICNSC), Calabria

    Google Scholar 

  94. Salam A, Hoang AD, Meghna A, Martin DR, Guzman G, Yoon YH, Carlson J, Kramer J, Yansi K, Kelly M, et al (2019) The future of emerging IoT paradigms: architectures and technologies. https://doi.org/10.20944/preprints201912.0276.v1

  95. Salam A, Vuran MC, Dong X, Argyropoulos C, Irmak S (2019) A theoretical model of underground dipole antennas for communications in internet of underground things. IEEE Trans Anten Propag 67(6):3996–4009

    Google Scholar 

  96. Salam A, Vuran MC, Irmak S (2019) Di-sense: in situ real-time permittivity estimation and soil moisture sensing using wireless underground communications. Comput Netw 151:31–41. https://doi.org/10.1016/j.comnet.2019.01.001. http://www.sciencedirect.com/science/article/pii/S1389128618303141

  97. Sanislav T, Miclea L (2012) Cyber-physical systems-concept, challenges and research areas. J Control Eng Appl Inf 14(2):28–33

    Google Scholar 

  98. Schepers AR, Shanahan JF, Liebig MA, Schepers JS, Johnson SH, Luchiari A (2004) Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron J 96(1):195–203

    Google Scholar 

  99. Schumann AW, et al (2006) Nutrient management zones for citrus based on variation in soil properties and tree performance. Prec Agric 7(1):45–63

    Google Scholar 

  100. Silva AR, Vuran MC (2010) (CPS)2: integration of center pivot systems with wireless underground sensor networks for autonomous precision agriculture. In: Proc. of ACM/IEEE international conference on cyber-physical systems, Stockholm, pp 79–88. http://doi.acm.org/10.1145/1795194.1795206

  101. Srbinovska M, Gavrovski C, Dimcev V, Krkoleva A, Borozan V (2015) Environmental parameters monitoring in precision agriculture using wireless sensor networks. J Cleaner Prod 88:297–307

    Google Scholar 

  102. Stojmenovic I (2014) Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-physical systems. IEEE Internet of Things J 1(2):122–128

    Google Scholar 

  103. Stuntebeck EP, Pompili D, Melodia T (2006) Wireless underground sensor networks using commodity terrestrial motes. In: 2nd IEEE Workshop on Wireless mesh networks, 2006, WiMesh 2006. IEEE, New York, pp 112–114

    Google Scholar 

  104. Tagarakis A, Liakos V, Fountas S, Koundouras S, Gemtos T (2013) Management zones delineation using fuzzy clustering techniques in grapevines. Prec Agric 14(1):18–39

    Google Scholar 

  105. Tagarakis AC, Ketterings QM, Lyons S, Godwin G (2017) Proximal sensing to estimate yield of brown midrib forage sorghum. Agron J 109(1):107–114

    Google Scholar 

  106. Temel S, Vuran MC, Lunar MM, Zhao Z, Salam A, Faller RK, Stolle C (2018) Vehicle-to-barrier communication during real-world vehicle crash tests. Comput Commun 127:172–186

    Google Scholar 

  107. Timmermann C, Gerhards R, Kühbauch W (2003) The economic impact of site-specific weed control. Prec Agric 4(3):249–260

    Google Scholar 

  108. Tiusanen MJ (2013) Soil scouts: Description and performance of single hop wireless underground sensor nodes. Ad Hoc Netw 11(5):1610–1618. http://dx.doi.org/10.1016/j.adhoc.2013.02.002

    Google Scholar 

  109. Vasileiadis V, Moonen A, Sattin M, Otto S, Pons X, Kudsk P, Veres A, Dorner Z, Van der Weide R, Marraccini E, et al (2013) Sustainability of European maize-based cropping systems: economic, environmental and social assessment of current and proposed innovative IPM-based systems. Eur J Agron 48:1–11

    Google Scholar 

  110. Vellidis G, Tucker M, Perry C, Kvien C, Bednarz C (2008) A real-time wireless smart sensor array for scheduling irrigation. Comput Electron Agric 61(1):44–50

    Google Scholar 

  111. Vereecken H, Huisman J, Pachepsky Y, Montzka C, Van Der Kruk J, Bogena H, Weihermüller L, Herbst M, Martinez G, Vanderborght J (2014) On the spatio-temporal dynamics of soil moisture at the field scale. J Hydrol 516:76–96

    Google Scholar 

  112. Vuran MC, Akyildiz IF (2010) Channel model and analysis for wireless underground sensor networks in soil medium. Phys Commun 3(4):245–254

    Google Scholar 

  113. Vuran MC, Salam A, Wong R, Irmak S (2018a) Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw. https://doi.org/10.1016/j.adhoc.2018.07.017. http://www.sciencedirect.com/science/article/pii/S1570870518305067

  114. Vuran MC, Salam A, Wong R, Irmak S (2018b) Internet of underground things in precision agriculture: architecture and technology aspects. Ad Hoc Netw 81:160–173

    Google Scholar 

  115. Vuran MC, Salam A, Wong R, Irmak S (2018c) Internet of underground things: sensing and communications on the field for precision agriculture. In: 2018 IEEE 4th world forum on Internet of Things (WF-IoT) (WF-IoT 2018), Singapore

    Google Scholar 

  116. Wang N, Zhang N, Wang M (2006) Wireless sensors in agriculture and food industry–recent development and future perspective. Comput Electron Agric 50(1):1–14

    Google Scholar 

  117. Wan J, Chen M, Xia F, Di L, Zhou K (2013) From machine-to-machine communications towards cyber-physical systems. Comput Sci Inf Syst 10(3):1105–1128

    Google Scholar 

  118. Western AW, Blöschl G (1999) On the spatial scaling of soil moisture. J Hydrol 217(3):203–224

    Google Scholar 

  119. Wong R (2017) Towards cloud-based center pivot irrigation automation based on in-situ soil information from wireless underground sensor networks. Master’s thesis, University of Nebraska-Lincoln

    Google Scholar 

  120. Wu FJ, Kao YF, Tseng YC (2011) From wireless sensor networks towards cyber physical systems. Perv Mob Comput 7(4):397–413

    Google Scholar 

  121. Wu X, Wang Q, Liu M (2015) In-situ soil moisture sensing: measurement scheduling and estimation using sparse sampling. ACM Trans Sensor Networks 11(2):26

    MathSciNet  Google Scholar 

  122. Zhang N, Wang M, Wang N (2002) Precision agriculture–a worldwide overview. Comput Electron Agric 36(2):113–132

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salam, A., Raza, U. (2020). Decision Agriculture. In: Signals in the Soil. Springer, Cham. https://doi.org/10.1007/978-3-030-50861-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50861-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50860-9

  • Online ISBN: 978-3-030-50861-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics