Skip to main content

Dynamic Regulation of T Cell Activation by Coupled Feedforward Loops

  • Chapter
  • First Online:
Infectious Diseases and Our Planet

Part of the book series: Mathematics of Planet Earth ((MPE,volume 7))

Abstract

The adaptive immune system responds to threats by activating T cells. However, this response is perilous if T cells are activated by the wrong signal or longer than necessary. It is therefore important that T cells get activated only by the right kind of signals and for the right duration. The dominant theory in immunology during recent decades has been that a T cell must receive at least two signals before it can become activated. It is, however, unclear whether and how this two-signal requirement ensures that T cell activation is provoked only by the right signals and that the response is just long enough. Here, we propose a novel, empirically founded hypothesis—i.e. the two-signal requirement induces a coherent feedforward loop motif, which prevents T cells from responding to spurious antigen signals, and ensures the response is quickly switched off once a persistent antigen signal has been cleared. Further consideration of the interaction between effector and regulatory T cells produces a coupled coherent-incoherent feedforward loop, analysis of which predicts that, in order for the effector cells to orchestrate immune responses before they are suppressed by the regulatory cells, the latter cells must have a higher costimulation threshold than the former. Strikingly, this prediction is supported by experimental data. Together, our results provide a novel perspective on the dynamical implications of the two-signal requirement for T cell activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davidson, A., Diamond, B.: Autoimmune diseases. N. Engl. J. Med. 345, 340–350 (2001)

    Article  Google Scholar 

  2. Lee, K.A.: Linking immune defenses and life history at the levels of the individual and the species. Integr. Comp. Biol. 46, 1000–1015 (2006)

    Article  Google Scholar 

  3. Rauw, W.M.: Immune response from a resource allocation perspective. Front. Genet. 3, 267 (2012)

    Article  Google Scholar 

  4. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S.P., Aleksander, I., Mak, T.W.: A human T cell-specific CDNA clone encodes a protein having extensive homology to immunoglobulin chains. Nature. 308, 145–149 (1984)

    Article  Google Scholar 

  5. Schwartz, R.H.: Costimulation of T lymphocytes: the role of Cd28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 71, 1065–1068 (1992)

    Article  Google Scholar 

  6. Bretscher, P., Cohn, M.: A theory of self-nonself discrimination. Science. 169, 1042–1049 (1970)

    Article  Google Scholar 

  7. Lafferty, K.J., Cunningham, A.: A new analysis of allogeneic interactions. Aust. J. Exp. Biol. Med. Sci. 53, 27–42 (1975)

    Article  Google Scholar 

  8. June, C.H., Ledbetter, J.A., Gillespie, M.M., Lindsten, T., Thompson, C.B.: T cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell. Biol. 7, 4472–4481 (1987)

    Article  Google Scholar 

  9. Linsley, P.S., Clark, E.A., Ledbetter, J.A.: T cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. 87, 5031–5035 (1990)

    Article  Google Scholar 

  10. Acuto, O., Michel, F.: CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003)

    Article  Google Scholar 

  11. Shahinian, A., Pfeffer, K., Lee, K.P., Kundig, T.M., Kishihara, K., Wakenah, A., et al.: Differential t cell costimulatory requirements in CD28-deficient mice. Science. 261, 609–613 (1993)

    Article  Google Scholar 

  12. Hutloff, A., Dittrich, A.M., Beier, K.C., Eljaschewitsch, B., et al.: ICOS is an inducible T cell co-stimulator structurally and functionally related to CD28. Nature. 397, 263–266 (1999)

    Article  Google Scholar 

  13. So, T., Lee, S.-W., Croft, M.: Immune regulation and control of regulatory T cells by OX40 and 4-1BB. Cytokine Growth Factor Rev. 19, 253–262 (2008)

    Article  Google Scholar 

  14. Chambers, C.A., et al.: CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19(1), 565–594 (2001)

    Article  Google Scholar 

  15. Keir, M.E., et al.: PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008)

    Article  Google Scholar 

  16. Watanabe, N., et al.: BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat. Immunol. 4(7), 670 (2003)

    Article  Google Scholar 

  17. Rudd, C.E., Taylor, A., Schneider, H.: CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol. Rev. 229, 12–26 (2009)

    Article  Google Scholar 

  18. Nishimura, H., Okazaki, T., Tanaka, Y., Nakatani, K., Hara, M., Matsumori, A., et al.: Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 291, 319–322 (2001)

    Article  Google Scholar 

  19. Waterhouse, P., Penninger, J.M., Timms, E., Wakeham, A., Shahinian, A., Lee, K.P., et al.: Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science. 270, 985–988 (1995)

    Article  Google Scholar 

  20. Sakaguchi, S., Yamaguchi, T., Nomura, T., Ono, M.: Regulatory T cells and immune tolerance. Cell. 133, 775–787 (2008)

    Article  Google Scholar 

  21. Tang, Q., Bluestone, J.A.: The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat. Immunol. 9, 239–244 (2008)

    Article  Google Scholar 

  22. Möller, G.: Do suppressor T cells exist? Scand. J. Immunol. 27, 247–250 (1988)

    Article  Google Scholar 

  23. Sakaguchi, S., Wing, K., Miyara, M.: Regulatory T cells – a brief history and perspective. Eur. J. Immunol. 37, S116–S123 (2007)

    Article  Google Scholar 

  24. Lenschow, D.J., Walunas, T.L., Bluestone, J.A.: Cd28/b7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996)

    Article  Google Scholar 

  25. Mueller, D.L., Jenkins, M.K., Schwartz, R.H.: Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989)

    Article  Google Scholar 

  26. Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., et al.: Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive t cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998)

    Article  Google Scholar 

  27. Thornton, A.M., Shevach, E.M.: CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998)

    Article  Google Scholar 

  28. Salomon, B., Lenschow, D.J., Rhee, L., Ashourian, N., Singh, B., Sharpe, A., et al.: B7/CD28 costimulation is essential for the homeostasis of the Cd4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity. 12, 431–440 (2000)

    Article  Google Scholar 

  29. Sansom, D.M., Walker, L.S.: The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T cell biology. Immunol. Rev. 212, 131–148 (2006)

    Article  Google Scholar 

  30. Tang, Q., Henriksen, K.J., Boden, E.K., Tooley, A.J., Ye, J., Subudhi, S.K., et al.: Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003)

    Article  Google Scholar 

  31. Bour-Jordan, H., Salomon, B.L., Thompson, H.L., Szot, G.L., Bernhard, M.R., Bluestone, J.A.: Costimulation controls diabetes by altering the balance of pathogenic and regulatory T cells. J. Clin. Invest. 114, 979–987 (2004)

    Article  Google Scholar 

  32. Rossini, A.A., Greiner, D.L., Mordes, J.P.: Induction of immunologic tolerance for transplantation. Physiol. Rev. 79, 99–141 (1999)

    Article  Google Scholar 

  33. Adams, A.B., Ford, M.L., Larsen, C.P.: Costimulation blockade in autoimmunity and transplantation: the CD28 pathway. J. Immunol. 197, 2045–2050 (2016)

    Article  Google Scholar 

  34. Bouguermouh, S., Fortin, G., Baba, N., Rubio, M., Sarfati, M.: CD28 co-stimulation down regulates Th17 development. PLoS One. 4, e5087 (2009)

    Article  Google Scholar 

  35. Vogel, I., Verbinnen, B., Maes, W., Boon, L., Van Gool, S.W., Ceuppens, J.L.: Foxp3+ regulatory T cells are activated in spite of B7-Cd28 and Cd40-CD401 blockade. Eur. J. Immunol. 43, 1013–1023 (2013)

    Article  Google Scholar 

  36. Hombach, A.A., Kofler, D., Hombach, A., Rappl, G., Abken, H.: Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J. Immunol. 179, 7924–7931 (2007)

    Article  Google Scholar 

  37. Chen, L., Flies, D.B.: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat. Rev. Immunol. 13, 227–242 (2013)

    Article  Google Scholar 

  38. Smith-Garvin, J.E., Koretzky, G.A., Jordan, M.S.: T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009)

    Article  Google Scholar 

  39. Manickasingham, S.P., et al.: Qualitative and quantitative effects of CD28/B7-mediated costimulation on naive T cells in vitro. J. Immunol. 161(8), 3827–3835 (1998)

    Google Scholar 

  40. Lee, T.I., Rinaldi, N.J., Robert, F., Odom, D.T., Bar-Joseph, Z., Gerber, G.K., et al.: Transcriptional regulatory networks in saccharomyces cerevisiae. Science. 298, 799–804 (2002)

    Article  Google Scholar 

  41. Mangan, S., Zaslaver, A., Alon, U.: The coherent feedforward loop serves as a sign- sensitive delay element in transcription networks. J. Mol. Biol. 334, 197–204 (2003)

    Article  Google Scholar 

  42. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science. 298, 824–827 (2002)

    Article  Google Scholar 

  43. Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., et al.: Essential cell biology. Garland Science, New York (2013)

    Book  Google Scholar 

  44. White, J.: Neuronal connectivity in caenorhabditis elegans. Trends Neurosci. 8, 277–283 (1985)

    Article  Google Scholar 

  45. Althaus, C.L., De Boer, R.J.: Dynamics of immune escape during HIV/SIV infection. PLoS Comp. Biol. 7, e1000103 (2008)

    Article  MathSciNet  Google Scholar 

  46. Asquith, B., McLean, A.R.: In vivo CD8+ T cell control of immunodeficiency virus infection in humans and macaques. Proc. Natl. Acad. Sci. U. S. A. 104(15), 6365–6370 (2007)

    Article  Google Scholar 

  47. Ganusov, V.V., De Boer, R.J.: Estimating in vivo death rates of targets due to CD8 T cell-mediated killing. J. Virol. 82(23), 11749–11757 (2008)

    Article  Google Scholar 

  48. Perelson, A.S.: Modelling viral and immune system dynamics. Nat. Rev. Immunol. 2(1), 28 (2002)

    Article  Google Scholar 

  49. Saez-Rodriguez, J., et al.: A logical model provides insights into T cell receptor signaling. PLoS Comp. Biol. 3(8), e163 (2007)

    Article  MathSciNet  Google Scholar 

  50. Beyer, T., et al.: Integrating signals from the T cell receptor and the interleukin-2 receptor. PLoS Comp. Biol. 8, e1002121 (2011)

    Article  MathSciNet  Google Scholar 

  51. Figueroa-Morales, N., Leon, K., Mulet, R.: Stochastic approximation to the T cell mediated specific response of the immune system. J. Theor. Biol. 295, 37–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  52. Garca-Martnez, K., Leon, K.: Modeling the role of IL-2 in the interplay between CD4+ helper and regulatory T cells: assessing general dynamical properties. J. Theor. Biol. 262(4), 720–732 (2010)

    Article  MATH  Google Scholar 

  53. Groß, F., Metzner, G., Behn, U.: Mathematical modeling of allergy and specific immunotherapy: Th1–Th2–Treg interactions. J. Theor. Biol. 1, 70–78 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  54. Khailaie, S., et al.: A mathematical model of immune activation with a unified self-nonself concept. Front. Immunol. 4, 474 (2013)

    Article  Google Scholar 

  55. Saeki, K., Iwasa, Y.: Optimal number of regulatory T cells. J. Theor. Biol. 263(2), 210–218 (2010)

    Article  MATH  Google Scholar 

  56. Sontag, E.D.: A dynamic model of immune responses to antigen presentation predicts different regions of tumor or pathogen elimination. Cell Syst. 4, 231–241 (2017)

    Article  Google Scholar 

  57. Nakagawa, T.Y., Brissette, W.H., Lira, P.D., Griffiths, R.J., Petrushova, N., Stock, J., et al.: Impaired invariant chain degradation and antigen presentation and diminished collagen- induced arthritis in cathepsin S null mice. Immunity. 10, 207–217 (1999)

    Article  Google Scholar 

  58. Abbas, A.K., Janeway, C.A.: Immunology: improving on nature in the twenty-first century. Cell. 100, 129–138 (2000)

    Article  Google Scholar 

  59. Nijkamp, F.P., Parnham, M.J.: Principles of immunopharmacology. Springer Science & Business Media, New York (2006)

    Google Scholar 

  60. Alon, U.: Biological networks: the tinkerer as an engineer. Science. 301, 1866–1867 (2003)

    Article  Google Scholar 

  61. Guo, F., Iclozan, C., Suh, W.-K., Anasetti, C., Yu, X.-Z.: CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J. Immunol. 181, 2285–2291 (2008)

    Article  Google Scholar 

  62. Refaeli, Y., Van Parijs, L., London, C.A., Tschopp, J., Abbas, A.K.: Biochemical mechanisms of IL-2–regulated FAS-mediated T cell apoptosis. Immunity. 8, 615–623 (1998)

    Article  Google Scholar 

  63. Savir, Y., Waysbort, N., Antebi, Y.E., Tlusty, T., Friedman, N.: Balancing speed and accuracy of polyclonal T cell activation: a role for extracellular feedback. BMC Syst. Biol. 6, 111 (2012)

    Article  Google Scholar 

  64. Alpan, O., Bachelder, E., Isil, E., Arnheiter, H., Matzinger, P.: ’Educated’ dendritic cells act as messengers from memory to naive T helper cells. Nat. Immunol. 5, 615–622 (2004)

    Article  Google Scholar 

  65. Leon, K., Perez, R., Lage, A., Carneiro, J.: Modelling T cell-mediated suppression dependent on interactions in multicellular conjugates. J. Theor. Biol. 207, 231–254 (2000)

    Article  Google Scholar 

  66. Bour-Jordan, H., Bluestone, J.A.: Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunol. Rev. 229, 41–66 (2009)

    Article  Google Scholar 

  67. Au-Yeung, B.B., et al.: A sharp T cell antigen receptor signaling threshold for T cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 111(35), 3679–3688 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Ndifon .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Fig. S1

Dynamics of C1-FFL with an AND gate input function and an exponentially increasing antigen signal. Activation of T effector cells waits until the costimulation signal passes the activation threshold. As expected, based on Eqs. (1) and (5), the waiting time decreases as the growth rate of the antigen signal increases due to a corresponding increase in the costimulation signal. In addition, the point at which the Te response converges increases with the growth rate up to a maximum. Parameter values used were: βc = βTe = αc = αe = KAC = KATe = KCTe = μ = 1, n = 4. λ was set to 0.1 (a), 0.5 (b) and 0.9 (c) (PNG 55 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buri, G., Zelleke, G.M., Ndifon, W. (2021). Dynamic Regulation of T Cell Activation by Coupled Feedforward Loops. In: Teboh-Ewungkem, M.I., Ngwa, G.A. (eds) Infectious Diseases and Our Planet. Mathematics of Planet Earth, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-50826-5_9

Download citation

Publish with us

Policies and ethics