Skip to main content

Increasing Productivity of Connecting Rods Machining

  • Conference paper
  • First Online:
Book cover Advances in Design, Simulation and Manufacturing III (DSMIE 2020)

Abstract

The paper is dedicated to the increase of the efficiency of multiproduct manufacturing. The experience in designing the manufacturing processes of manufacturing machining parts, such as connecting rods, is analyzed. A progressive manufacturing process based on the concept of intensification of machining and application of multiaxis equipment is proposed. This approach made it possible to reduce the complexity of the manufacturing process in drilling, milling, and boring operations. Research has been conducted on the design, optimization, modeling, and production of fixtures for multiproduct manufacturing. The design of a flexible fixture for machining non-detachable connecting rods is provided, which allows adjustment of locating and clamping elements in a certain size range. Studies have shown an increase in machining productivity of the proposed manufacturing process from 1.7 to 3.9 times depends on batch size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ivanov, V., Dehtiarov, I., Pavlenko, I., Kosov, I., Kosov, M.: Technology for complex parts machining in multiproduct manufacturing. Manag. Prod. Eng. Rev. 10(2), 25–36 (2019). https://doi.org/10.24425/mper.2019.129566

    Article  Google Scholar 

  2. Ben, W.: The future of manufacturing: a new perspective. Engineering 4, 722–728 (2018). https://doi.org/10.1016/j.eng.2018.07.020

    Article  Google Scholar 

  3. Ambrogio, G., Gagliardi, F., Muzzupappa, M., Filice, L.: Additive-incremental forming hybrid manufacturing technique to improve customised part performance. J. Manuf. Process. 37, 386–391 (2019). https://doi.org/10.1016/j.jmapro.2018.12.008

    Article  Google Scholar 

  4. El-Tamimi, A.M., Abidi, M.H., Hammad, S.M., Aalam, J.: Analysis of performance measures of flexible manufacturing system. J. King Saud Univ. 24(2), 115–129 (2012). https://doi.org/10.1016/j.jksues.2011.06.005

    Article  Google Scholar 

  5. Lafou, M., Mathieu, L., Pois, S., Alochet, M.: Manufacturing system flexibility: product flexibility assessment. Procedia CIRP 41, 99–104 (2016). https://doi.org/10.1016/j.procir.2015.12.046

    Article  Google Scholar 

  6. Do, M.D., Son, Y., Choi, H.J.: Optimal workpiece positioning in flexible fixtures for thin-walled components. Comput. Aided Des. 95, 14–23 (2018). https://doi.org/10.1016/j.cad.2017.09.002

    Article  Google Scholar 

  7. Ivanov, V., Pavlenko, I., Liaposhchenko, O., Gusak, O., Pavlenko, V.: Determination of contact points between workpiece and fixture elements as a tool for augmented reality in fixture design. Wirel. Netw. (2019). https://doi.org/10.1007/s11276-019-02026-2

    Article  Google Scholar 

  8. Zheng, Y., Qian, W.H.: A 3-D modular fixture with enhanced localization accuracy and immobilization capability. Int. J. Mach. Tools Manuf 48(6), 677–687 (2008). https://doi.org/10.1016/j.ijmachtools.2007.10.022

    Article  Google Scholar 

  9. Tohidi, H., AlGeddawy, T.: Planning of modular fixtures in a robotic assembly system. Procedia CIRP 41, 252–257 (2016). https://doi.org/10.1016/j.procir.2015.12.090

    Article  Google Scholar 

  10. Yamaguchi, T., Higuchi, M., Nagai, K.: Assembly system by using prototype of active flexible fixture. In: Arai, E., Arai, T. (eds.) Mechatronics for Safety, Security and Dependability in a New Era, pp. 125–188. Elsevier (2007). https://doi.org/10.1016/b978-008044963-0/50026-6

  11. Yarovyi, Y., Yarova, I.: Energy criterion for metal machining methods. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE-2019. Lecture Notes in Mechanical Engineering, pp. 378–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_38

  12. Kotliar, A., Basova, Y., Ivanov, V., Murzabulatova, O., Vasyltsova, S., Litvynenko, M., Zinchenko, O.: Ensuring the economic efficiency of enterprises by multi-criteria selection of the optimal manufacturing process. Manag. Prod. Eng. Rev. 11(1), 52–61 (2020). https://doi.org/10.24425/mper.2020.132943

    Article  Google Scholar 

  13. Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Period. Polytech. Mech. Eng. 63(1), 67–73 (2019). https://doi.org/10.3311/PPme.13198

    Article  Google Scholar 

  14. Kotliar, A., Basova, Y., Ivanova, M., Gasanov, M., Sazhniev, I.: Technological assurance of machining accuracy of crankshaft. In: Diering, M., Wieczorowski, M., Brown, C. (eds.) Advances in Manufacturing II. Volume 5 - Metrology and Measurement Systems. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, pp. 37–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18682-1_4

  15. Sokolov, V., Krol, O., Baturin, Y.: Dynamics research and automatic control of technological equipment with electrohydraulic drive. In: 2019 International Russian Automation Conference, RusAutoCon 2019. IEEE (2019). https://doi.org/10.1109/rusautocon.2019.8867652

  16. Krol, O., Sokolov, V.: Development of models and research into tooling for machining centers. East.-Eur. J. Enterp. Technol. 3(1–93), 12–22 (2018). https://doi.org/10.15587/1729-4061.2018.131778

    Article  Google Scholar 

  17. Józwik, J., Kuric, I., Łukaszewicz, A.: Analysis of the table motion of a 3-axis CNC milling machine tool at start-up and braking. In: Tonkonogyi V., et al. (eds.) Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering, pp. 108–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_11

  18. Kostyuk, G.: Prediction of the microhardness characteristics, the removable material volume for the durability period, cutting tools durability and processing productivity depending on the grain size of the coating or cutting tool base material. In: Gapiński, B., Szostak, M., Ivanov, V. (eds.) Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, pp. 300–316. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16943-5_27

  19. Kostyuk, G., Nechyporuk, M., Kostyk, K.: Determination of technological parameters for obtaining nanostructures under pulse laser radiation on steel of drone engine parts. In: 10th International Conference on Dependable Systems, Services and Technologies, DESSERT 2019, pp. 208–212. IEEE (2019). https://doi.org/10.1109/dessert.2019.8770053

  20. Tarelnyk, V., Konoplianchenko, I., Tarelnyk, N., Kozachenko, A.: Modeling technological parameters for producing combined electrospark deposition coatings. Mater. Sci. Forum 968, 131–142 (2019). https://doi.org/10.4028/www.scientific.net/MSF.968.131

    Article  Google Scholar 

  21. Dodok, T., Čuboňová, N., Císar, M., Ivanov, V., Wiecek, D.: Influence of CNC milling strategies on complex surface machining. IOP Conf. Ser. Mater. Sci. Eng. 776, 012002 (2020). https://doi.org/10.1088/1757-899X/776/1/012002

    Article  Google Scholar 

  22. Cioatǎ, V.G., Kiss, I., Alexa, V., Raţiu, S.A., Racov, M.: Study of the influence of the cutting temperature on the magnitude of the contact forces in the machining fixtures. IOP Conf. Ser. Mater. Sci. Eng. 294 (2018). https://doi.org/10.1088/1757-899x/294/1/012072

  23. Dobrotvorskiy, S., Basova, Y., Ivanova, M., Kotliar, A., Dobrovolska, L.: Forecasting of the productivity of parts machining by high-speed milling with the method of half-overlap. Diagnostyka 19(3), 37–42 (2018). https://doi.org/10.29354/diag/93136

    Article  Google Scholar 

  24. Zaloga, V., Dyadyura, K., Rybalka, I., Pandova, I.: Implementation of integrated management system in order to enhance equipment efficiency. Manag. Syst. Prod. Eng. 27(4), 221–226 (2019). https://doi.org/10.1515/mspe-2019-0035

    Article  Google Scholar 

  25. Dynnyk, O., Denysenko, Y., Zaloga, V., Ivchenko, O., Yashyna, T.: Information support for the quality management system assessment of engineering enterprises. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE-2019. Lecture Notes in Mechanical Engineering, pp. 65–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_7

  26. Cioatǎ, V.G., Kiss, I., Alexa, V., Raţiu, S.A.: Study of the contact forces between workpiece and fixture using dynamic analysis. J. Phys: Conf. Ser. 1426, 012040 (2020). https://doi.org/10.1088/1742-6596/1426/1/012040

    Article  Google Scholar 

  27. Pavlenko, I., Trojanowska, J., Ivanov, V., Liaposhchenko, O.: Parameter identification of hydro-mechanical processes using artificial intelligence systems. Int. J. Mechatron. Appl. Mech. 2019(5), 19–26 (2019)

    Google Scholar 

  28. Oborskyi, G., Orgiyan, A., Tonkonogyi, V., Aymen, A., Balaniuk, A.: Study of dynamic impacts at combined operations of the thin turning and boring. In: Tonkonogyi, V., et al. (eds.) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pp. 226–235. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_23

  29. Orgiyan, A., Tkachenko, B., Oborskyi, G., Balaniuk, A., Iorgachov, V.: Determining rational cutting modes for horizontal boring operation adjusted for the variable rigidity of the process system. In: Tonkonogyi, V., et al. (eds.) Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pp. 246–253. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40724-7_25

  30. Wan, N., Wang, Z., Mo, R.: An intelligent fixture design method based on smart modular fixture unit. Int. J. Adv. Manuf. Technol. 69, 2629–2649 (2013). https://doi.org/10.1007/s00170-013-5134-3

    Article  Google Scholar 

  31. Ivanov, V., Vashchenko, S., Rong, Y.K.: Information Support of the computer-aided fixture design system. In: Ermolayev, V., et al. (eds.) Proceedings of the 12th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. ICTERI 2016, vol. 1614, pp. 73–86. CEUR-WS.org (2016)

    Google Scholar 

  32. Haidabrus, B., Druzhinin, E., Elg, M., Jason, M., Grabis, J.: Programs to boost IT-readiness of the machine building enterprises. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE-2019. Lecture Notes in Mechanical Engineering, pp. 75–84. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_8

  33. Sreekumar, M.D., Chhabra, M., Yadav, R.: Productivity in manufacturing industries. Int. J. Innov. Sci. Res. Technol. 3(10), 634–639 (2018)

    Google Scholar 

  34. Antoniolli, I., Guariente, P., Pereira, T., Pinto Ferreira, L., Silva, F.J.G.: Standartization and optimization of the automotive components production line. Procedia Manuf. 13, 1120–1127 (2017). https://doi.org/10.1016/j.promfg.2017.09.173

  35. Gamberini, R., Galloni, L., Lolli, F., Rimini, B.: On the analysis of effectiveness in a manufacturing cell: a critical implementation of existing approaches. Procedia Manuf. 11, 1882–1891 (2017). https://doi.org/10.1016/j.promfg.2017.07.328

    Article  Google Scholar 

  36. Azizi, A.: Evaluation improvement of production productivity performance using statistical process control, overall equipment efficiency, and autonomous maintenance. Procedia Manuf. 2, 186–190 (2015). https://doi.org/10.1016/j.promfg.2015.07.032

    Article  Google Scholar 

Download references

Acknowledgment

The research was realized within the project “Optimization of the Production Cycle of Complex Parts Manufacturing Using Modular Tooling” (State Reg. Number 0119U103186) funded by the Grant of the President of Ukraine for Young Scientists and the project “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” (State Reg. Number 0117U003931) funded by the Ministry of Education and Science of Ukraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii Ivanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, V., Dehtiarov, I., Zaloga, V., Kosov, I., Savchuk, V. (2020). Increasing Productivity of Connecting Rods Machining. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Zajac, J., Peraković, D. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50794-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50794-7_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50793-0

  • Online ISBN: 978-3-030-50794-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics