Abstract
The reasoning process about the level of student’s knowledge can be challenging even for experienced human tutors. The Bayesian networks are a formalism for reasoning under uncertainty, which has been successfully used for various artificial intelligence applications, including student modeling. While Bayesian networks are a highly flexible graphical and probabilistic modeling framework, its main challenges are related to the structural design and the definition of “a priori” and conditional probabilities. Since the AC&NL Tutor’s authoring tool automatically generates tutoring elements of different linguistic complexity, the generated sentences and questions fall into three difficulty levels. Based on these levels, the probability-based Bayesian student model is proposed for mastery-based learning in intelligent tutoring system. The Bayesian network structure is defined by generated questions related to the node representing knowledge in a sentence. Also, there are relations between inverse questions at the same difficulty level. After the structure is defined, the process of assigning “a priori” and conditional probabilities is automated using several heuristic expert-based rules.
Keywords
- Intelligent tutoring systems
- Student modeling
- Bayesian networks
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Chrysafiadi, K., Virvou, M.: Student modeling approaches: a literature review for the last decade. Exp. Syst. Appl. 40, 4715–4729 (2013). https://doi.org/10.1016/j.eswa.2013.02.007
Pelánek, R.: Metrics for evaluation of student models. JEDM J. Educ. Data Mining 7, 1–19 (2015). https://doi.org/10.5281/zenodo.3554665
Conati, C.: Bayesian student modeling. In: Nkambou, R., Bourdeau, J., Mizoguchi, R. (eds.) Advances in Intelligent Tutoring Systems. Studies in Computational Intelligence, vol. 308. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14363-2_14
Pelánek, R.: Bayesian knowledge tracing, logistic models, and beyond: an overview of learner modeling techniques. User Model. User-Adapt. Interact. 27, 313–350 (2017). https://doi.org/10.1007/s11257-017-9193-2
Grubišić, A., Stankov, S., Žitko, B.: Adaptive Courseware based on Natural Language Processing (AC & NL Tutor), United States Office of Naval Research grant (N00014-15-1-2789) (2015)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Elsevier, Amsterdam (1988). https://doi.org/10.1016/C2009-0-27609-4
Millán, E., Loboda, T., Pérez-de-la-Cruz, J.L.: Bayesian networks for student model engineering. Comput. Educ. 55, 1663–1683 (2010). https://doi.org/10.1016/j.compedu.2010.07.010
Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adapt. Interact. 4, 253–278 (1994)
Baker, R.S.J.d., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian Knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44
Beck, J.E., Chang, K., Mostow, J., Corbett, A.: Does help help? Introducing the Bayesian evaluation and assessment methodology. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) Intelligent Tutoring Systems, pp. 383–394. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_42
Pardos, Z.A., Heffernan, N.T.: Navigating the parameter space of Bayesian knowledge tracing models: visualizations of the convergence of the expectation maximization algorithm. In: EDM (2010)
Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24
Pardos, Z.A., Heffernan, N.T.: KT-IDEM: introducing item difficulty to the knowledge tracing model. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 243–254. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22362-4_21
Schreiber, J.: Pomegranate: fast and flexible probabilistic modeling in python. J. Mach. Learn. Res. 18(164), 1–6 (2018)
Acknowledgments
This paper is part of the Adaptive Courseware & Natural Language Tutor project (N00014-15-1-2789) and the Enhancing Adaptive Courseware based on Natural Language Processing project (N00014-20-1-2066) that are supported by the United States Office of Naval Research Grant.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Šarić-Grgić, I. et al. (2020). Bayesian Student Modeling in the AC&NL Tutor. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. HCII 2020. Lecture Notes in Computer Science(), vol 12214. Springer, Cham. https://doi.org/10.1007/978-3-030-50788-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-50788-6_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50787-9
Online ISBN: 978-3-030-50788-6
eBook Packages: Computer ScienceComputer Science (R0)