Skip to main content

Introduction to Nanomaterials and Nanotechnology

  • Chapter
  • First Online:
Emerging Technologies for Nanoparticle Manufacturing

Abstract

Nanotechnology is the innovatory technology of the twenty-first century, and nanoscale materials have created a considerable amount of attention from researchers. It is an emerging interdisciplinary area of research wherever groupings of atoms as well as molecules are handled at the nanometer levels. It can be defined as the systematic study of materials that have properties critically dependent on length scales on the order of nanometers. Such novel and improved properties make nanoscale materials promising candidates to provide the best scientific as well as technological progress in a number of fields in particular communications, electronics, energy, environment, information, biology, pharmacy, health care, and medical care. This chapter first draws attention to the different definitions and classification of nanomaterials based on their origin, chemical composition, materials, and their dimensions. The fundamental properties of matter transform at the nanoscale and the most enhanced and valuable properties of manufactured nanomaterials such as confinement effects, surface effects, mechanical properties, structural properties, thermal properties, optical properties, and magnetic properties are also described. In the last section, we have discussed various methods to fabricate nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelsalam HA, Abdelaziz AY. The smart grid state of the art and future trends. Electr Power Compon Syst. 2014;42:306–14.

    Article  Google Scholar 

  • Antoniammal P, Arivuoli D. Size and shape dependence on melting temperature of gallium nitride nanoparticles. J Nanomater. 2012;2012:415797.

    Article  CAS  Google Scholar 

  • Ariga K, Li M, Richards GJ, Hill JP. Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol. 2011;11:1–13.

    Article  CAS  PubMed  Google Scholar 

  • Aruna ST, Mukasyan AS. Combustion synthesis and nanomaterials. Curr Opin Solid State Mater Sci. 2008;12:44–50.

    Article  CAS  Google Scholar 

  • Asmatulu R, Asmatulu E, Zhang B. Nanotechnology and nanoethics in engineering education. In: Proceedings of the 2010 Midwest section conference of the American Society for Engineering Education. Lawrence, KS; 2010. p. 1–11.

    Google Scholar 

  • Aznan NZK, Johan MR. Quantum size effect in ZnO nanoparticles via mechanical milling. J Nanomater. 2012;2012:439010.

    Article  CAS  Google Scholar 

  • Bader SD, Buchanan KS, Chung SH, Guslienko KY, Hoffmann A, Ji Y, et al. Issues in nanomagnetism. Superlattice Microst. 2007;41:72–80.

    Article  CAS  Google Scholar 

  • Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility. J Control Release. 2011;153(3):198–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10:569–81.

    Article  CAS  PubMed  Google Scholar 

  • Balaz P. Mechanochemistry in nanoscience and minerals engineering. Berlin: Springer; 2008.

    Google Scholar 

  • Barakat N, Jiao H. Nanotechnology integration to enhance undergraduate engineering education. In: Bernardino J, Quadrado JC, editors. Proceedings of the SEFI annual conference. 1st world engineering education flash week, Lisbon, Portugal; 2011. p. 623–30.

    Google Scholar 

  • Bashir S, Liu J. Overviews of synthesis of nanomaterials. In: Bashir S, Liu J, editors. Advanced nanomaterials and their applications in renewable energy: Elsevier Science; 2015. p. 51–115.

    Google Scholar 

  • Berger M. NASA and nanotechnology. 2012. http://www.nanowerk.com. Accessed 10 Oct 2019.

  • Blackwelder B. Nanotechnology jumps the gun: nanoparticles in consumer products. In: Cameron NM, Mitchell ME, editors. Nanoscale: issues and perspectives for the nano centry. Hoboken: Wiley; 2007. p. 71–82.

    Chapter  Google Scholar 

  • Blum AS, Soto CM, Wilson CD, Brower TL, Pollack SK, Schull TL, et al. An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small. 2005;1:702–6.

    Article  CAS  PubMed  Google Scholar 

  • Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol. 2015;73(1):137–50.

    Article  CAS  PubMed  Google Scholar 

  • Brechignac CP, Houdy P, Lahmani M. Nanomaterials and nanochemistry. Berlin/Heidelberg/New York: Springer; 2006.

    Google Scholar 

  • Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiolderivatised gold nanoparticles in a two-phase liquid-liquid system. J Chem Soc Chem Commun. 1994;7:801–2.

    Article  Google Scholar 

  • Buzea C, Pacheco-Blandino I, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):MR17–MR172.

    Article  PubMed  Google Scholar 

  • Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, et al. Nanoscale thermal transport. J Appl Phys. 2003;93:793–818.

    Article  CAS  Google Scholar 

  • Cao G. Nanostructures and nanomaterials: synthesis, properties and applications. J Am Chem Soc. 2004;126(44):14679.

    CAS  Google Scholar 

  • Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V. Manufacturing nanomaterials: from research to industry. Manuf Rev. 2014;1(11):1–19.

    Google Scholar 

  • Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Dai XJ, Magniez K, Lamb PR, de Celis Leal DR, Fox BL, et al. Improving the mechanical properties of epoxy using multiwalled carbon nanotubes functionalized by a novel plasma treatment. Compos Part A Appl Sci Manuf. 2013;45:145–52.

    Article  CAS  Google Scholar 

  • Daniel MC, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, Quantumsize related properties and applications towards biology catalysis and nanotechnology. Chem Rev. 2004;104(1):293–346.

    Article  CAS  PubMed  Google Scholar 

  • Daryoush B, Darvish A. A case study and review of nanotechnology and nanomaterials in green architecture. Res J Environ Earth Sci. 2013;5:78–84.

    Google Scholar 

  • Dasgupta N, Ranjan S, Mundekkad D, Ramalingam C, Shanker R, Kumar A. Nanotechnology in agro-food: from field to plate. Food Res Int. 2015;69:381–400.

    Article  Google Scholar 

  • Dasgupta N, Ranjan S, Chakraborty AR, Ramalingam C, Shanker R, Kumar A. Nanoagriculture and water quality management. In: Ranjan S, Dasgupta N, Lichfouste E, editors. Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol. 20. Cham: Springer; 2016. p. 1–42.

    Chapter  Google Scholar 

  • De Rogatis L, Montini T, Gombac V, Cargnell M, Fornasiero P. Stabilized metal nanoparticles embedded into porous oxides: a challenging approach for robust catalysts. In: Prescott WV, Schwartz AI, editors. Nanorods, nanotubes and nanomaterials research progress. New York: Nova Science Publishers; 2008. p. 71–123.

    Google Scholar 

  • Dequesnes M, Rotkin S, Aluru N. Calculation of pull-in voltages for carbonnanotube-based nanoelectromechanical switches. Nanotechnology. 2002;13(1):120–31.

    Article  Google Scholar 

  • Dhingra R, Naidu S, Upreti G, Sawhney R. Sustainable nanotechnology: through green methods and life-cycle thinking. Sustainability. 2010;2:3323–38.

    Article  Google Scholar 

  • Diserens M, Patscheider J, Levy F. Mechanical properties and oxidation resistance of nanocomposite TiN–SiNx physical-vapor-deposited thin films. Surf Coat Technol. 1999;120:158–65.

    Article  Google Scholar 

  • Eguchi M, Mitsui D, Wu H-L, Sato R, Teranishi T. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Langmuir. 2012;28:9021–6.

    Article  CAS  PubMed  Google Scholar 

  • Eletskii AV. Mechanical properties of carbon nanostructures and related materials. Phys-Uspekhi. 2007;50:225–61.

    Article  CAS  Google Scholar 

  • Fajardo AR, Pereira AGB, Muniz EC. Hydrogels nanocomposites based on crystals, whiskers and fibrils derived from biopolymers. In: Thakur VK, Thakur MK, editors. Eco-friendly polymer nanocomposites, advanced structured materials. New Delhi: Springer; 2015. p. 43–71.

    Chapter  Google Scholar 

  • Feynman RP. There’s plenty of room at the bottom. Eng Sci. 1960;23(5):22–36.

    Google Scholar 

  • Filella M. Nanomaterials. In: Pawliszyn J, editor. Comprehensive sampling and sample preparation, vol. 1. Amsterdam: Academic Press; 2012. p. 109–24.

    Chapter  Google Scholar 

  • Filipponi L, Sutherland D. Nanotechnologies: principles, applications, implications and hands-on activities. Directorate-General for Research and Innovation Industrial Technologies (NMP). Luxembourg: European Union; 2013.

    Google Scholar 

  • Gaffet E. Nanomaterials: a review of the definitions, applications, health effects. How to implement secure development. 2011. https://hal.archives-ouvertes.fr/hal-00598817/file/E.Gaffet-GB.pdf. Accessed 29 Aug 2019.

  • Gamucci O, Bertero A, Gagliardi M, Bardi G. Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings. 2014;4(1):139–59.

    Article  CAS  Google Scholar 

  • Gendelman HE, Anantharam V, Bronich T, Ghaisas S, Jin H, Kanthasamy AG, et al. Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomed Nanotechnol Biol Med. 2015;11(3):751–67.

    Article  CAS  Google Scholar 

  • Gilmore JL, Yi X, Quan L, Kabanov AV. Novel nanomaterials for clinical neuroscience. J Neuroimmune Pharmacol. 2008;3:83–94.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gleiter H. Nanostructured materials: basic concepts and microstructure. Acta Mater. 2000;48:1–29.

    Article  CAS  Google Scholar 

  • Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sust Energ Rev. 2017;72:10–32.

    Article  CAS  Google Scholar 

  • Gubin SP. Magnetic nanoparticles. Weinheim: Wiley; 2009.

    Book  Google Scholar 

  • Guo D, Xie G, Luo J. Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys. 2014;47:1–25.

    Article  CAS  Google Scholar 

  • Henry C. Size effects on structure and morphology of free or supported nanoparticles. In: Brechignac C, Houdy P, Lahmani M, editors. Nanomaterials and nanochemistry. Berlin/Heidelberg: Springer; 2008. p. 3–34.

    Google Scholar 

  • Hiergeist R, Andra W, Buske N, Hergt R, Hilger I, Richter U, et al. Application of magnetite ferrofluids for hyperthermia. J Magn Magn Mater. 1999;201:420–2.

    Article  CAS  Google Scholar 

  • Hochella MF Jr, Spencer MG, Jones KL. Nanotechnology: nature’s gift or scientists’ brainchild? Environ Sci Nano. 2015;2(2):114–9.

    Article  CAS  Google Scholar 

  • Homola J, Yee SS, Gauglitz G. Surface plasmon resonance sensors: review. Sensors Actuat B Chem. 1999;54:3–15.

    Article  CAS  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, et al. Room-temperature ultraviolet nanowire nanolasers. Science. 2001;292:1897–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Ke W, Han L, Li J, Liu S, Jiang C. Targeted delivery of chlorotoxin-modified DNA loaded nanoparticles to glioma via intravenous administration. Biomaterials. 2011a;32(9):2399–406.

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Li J, Han L, Liu S, Ma H, Huang R, et al. Dual targeting effect of Angiopep-2- modified, DNA-loaded nanoparticles for glioma. Biomaterials. 2011b;32(28):6832–8.

    Article  CAS  PubMed  Google Scholar 

  • Huyen D. Carbon nanotubes and semiconducting polymer nanocomposites. In: Yellampalli S, editor. Carbon nanotubes -synthesis, characterization, applications. London: InTech; 2011.

    Google Scholar 

  • Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011;13:2638–50.

    Article  CAS  Google Scholar 

  • ISO/TS 27687. Nanotechnologies – terminology and definitions for nanoobjects – nanoparticle, nanofibre, nanoplate. 2008. https://www.iso.org/standard/44278.html. Accessed 25 Jul 2019.

  • ISO/TS 80004-1. International standardization organization technical standard: nanotechnologies – vocabulary – Part 1: Core terms. International Organization for Standardization, Geneva, Switzerland; 2010. https://www.iso.org/standard/51240.html. Accessed 17 Sep 2019.

    Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnston RL, Wilcoxon JP. Frontiers of nanoscience, vol. 3. Oxford: Elsevier; 2012.

    Google Scholar 

  • Jordan CC, Kaiser I, Moore VC. 2013 Nanotechnology patent literature review: graphitic carbon-based nanotechnology and energy applications are on the rise. Nanotechnol Law Bus. 2014;11(2):111–25.

    Google Scholar 

  • Junk A, Riess F. From an idea to a vision: there’s plenty of room at the bottom. Am J Phys. 2006;74(9):825–30.

    Article  CAS  Google Scholar 

  • Juve V, Crut A, Maioli P, Pellarin M, Broyer M, Del Fatti N, et al. Probing elasticity at the nanoscale: terahertz acoustic vibration of small metal nanoparticles. Nano Lett. 2010;10:1853–8.

    Article  CAS  PubMed  Google Scholar 

  • Keblinski P, Eastman JA, Cahill DG. Nanofluids for thermal transport. Mater Today. 2005;8(6):36–44.

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TE, Hand RD, Lyon DY, et al. Nanoparticles in the environment: behavior, fate, bioavailability and effects. Environ Toxicol Chem. 2008;27(9):1825–51.

    Article  CAS  PubMed  Google Scholar 

  • Koch CC, Ovidko IA, Seal S, Veprek S. Structural nanocrystalline materials: fundamentals and applications. New York: Cambridge University Press; 2007.

    Book  Google Scholar 

  • Koo JH. Polymer nanocomposites – processing, characterization, and applications. New York: McGraw-Hill; 2006.

    Google Scholar 

  • Koo JH. Fundamentals, properties and applications of polymer nanocomposites. New York: Cambridge University Press; 2016. p. 3–17.

    Google Scholar 

  • Koski KJ, Cui Y. The new skinny in two-dimensional nanomaterials. ACS Nano. 2013;7:3739–43.

    Article  CAS  PubMed  Google Scholar 

  • Kreuter J. Nanoparticles-a historical perspective. Int J Pharm. 2007;331:1–10.

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Kumbhat S. Carbon-based nanomaterials. In: Essentials in nanoscience and nanotechnology. Hoboken: Wiley; 2016. p. 189–236.

    Chapter  Google Scholar 

  • Labastie P, Calvo F. Thermodynamics and Solid-liquid transitions. In: Brechignac C, Houdy P, Lahmani M, editors. Nanomaterials and nanochemistry. Berlin/Heidelberg: Springer; 2008. p. 55–87.

    Google Scholar 

  • Law M, Goldberger J, Yang P. Semiconductor nanowires and nanotubes. Annu Rev Mater Res. 2004;34:83–122.

    Article  CAS  Google Scholar 

  • Lin KF, Cheng HM, Hsu HC, Lin LJ, Hsieh WF. Band gap variation of size-controlled ZnO quantum dots synthesized by sol–gel method. Chem Phys Lett. 2005;409:208–11.

    Article  CAS  Google Scholar 

  • Lin J, Zhang C, Yan Z, Zhu Y, Peng Z, Hauge RH, et al. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013;13:72–8.

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Li Y, Xiao S, Gan H, Jiu T, Li H, et al. Synthesis of organic one-dimensional nanomaterials by solid-phase reaction. J Am Chem Soc. 2003;125:10794–5.

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Guo Y, Huang R, Li J, Huang S, Kuang Y, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials. 2012;33(19):4907–16.

    Article  CAS  PubMed  Google Scholar 

  • Lokhande J, Pathak Y. Handbook of metallonutraceuticals. Boca Raton: CRC Press/Taylor & Francis Group; 2014.

    Google Scholar 

  • Lu L, Shen Y, Chen X, Qian L, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science. 2004;304:422–6.

    Article  CAS  PubMed  Google Scholar 

  • Maddinedi SB, Mandala BK, Ranjanb S, Dasgupta N. Diastase assisted green synthesis of size controllable gold nanoparticles. RSC Adv. 2015;5:26727–33.

    Article  CAS  Google Scholar 

  • McHenry M, Laughlin D. Nano-scale materials development for future magnetic applications. Acta Mater. 2000;48:223–38.

    Article  CAS  Google Scholar 

  • Meyers MA, Mishra A, Benson DJ. Mechanical properties of nanocrystalline materials. Prog Mater Sci. 2006;51:427–556.

    Article  CAS  Google Scholar 

  • Mills DL, Bland JAC, editors. Nanomagnetism: ultrathin films, multilayers and nanostructures, vol. 1. 1st ed. Amsterdam: Elsevier Science; 2006. p. xi–xiii.

    Google Scholar 

  • Miyazaki K, Islam N. Nanotechnology systems of innovation – an analysis of industry and academia research activities. Technovation. 2007;27(11):661–75.

    Article  Google Scholar 

  • Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.

    Article  CAS  PubMed  Google Scholar 

  • Murty BS, Shankar P, Raj B, Rath BB, Murday J. Textbook of nanoscience and nanotechnology. Berlin: Springer; 2013.

    Book  Google Scholar 

  • Muskhelishvili NI. Some basic problems of the mathematical theory of elasticity. Dordrecht: Springer; 2013.

    Google Scholar 

  • Naseri MG, Saion EB. Crystallization in spinel ferrite nanoparticles. In: Mastai Y, editor. Advances in crystallization processes. Croatia: InTech; 2012. p. 349–80.

    Google Scholar 

  • Nasir Khan M, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH. Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. 2017;110:194–209.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CV, Ye Q, Meyyappan M. Carbon nanotube tips for scanning probe microscopy: fabrication and high aspect ratio nanometrology. Meas Sci Technol. 2005;16(11):2138–46.

    Article  CAS  Google Scholar 

  • Niepce JC, Pizzagalli L. Structure and phase transitions in nanocrystals. In: Brechignac C, Houdy P, Lahmani M, editors. Nanomaterials and nanochemistry. Berlin/Heidelberg: Springer; 2008. p. 35–54.

    Google Scholar 

  • Nikalje AP. Nanotechnology and its applications in medicine. Med Chem. 2015;5:81–9.

    Article  CAS  Google Scholar 

  • Obaid HN, Habeeb MA, Rashid FL, Hashim A. Thermal energy storage. Nanofluids J Energy Technol Policy. 2013;3:34–6.

    Google Scholar 

  • Ozin GA, Arsenault AC, Cademartiri L. Nanochemistry: a chemical approach to nanomaterials. Cambridge: The Royal Society of Chemistry; 2009.

    Google Scholar 

  • Pattnaik P. Surface plasmon resonance. Appl Biochem Biotechnol. 2005;126:79–92.

    Article  CAS  PubMed  Google Scholar 

  • Petracic O. Superparamagnetic nanoparticle ensembles. Superlattice Microst. 2010;47:569–78.

    Article  CAS  Google Scholar 

  • Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13–25.

    Google Scholar 

  • Pokropivny VV, Skorokhod VV. Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C. 2007;27:990–3.

    Article  CAS  Google Scholar 

  • Pokropivny VV, Lohmus R, Hussainova I, Pokropivny A, Vlassov S. Introduction to nanomaterials and nanotechnology. Ukraine: Tartu University Press; 2007. p. 29–40.

    Google Scholar 

  • Potocnik J. Commission recommendation of 18 October 2011 on the definition of nanomaterials. Off J Eur Communities Legis. 2011;L275:38–40.

    Google Scholar 

  • Pradeep T. Nano: the essentials – understanding nanoscience and nanotechnology. New Delhi: Tata McGraw-Hill Publishing; 2007. p. 3–15.

    Google Scholar 

  • Pulimi M, Subramanian S. Nanomaterials for soil fertilisation and contaminant removal. In: Ranjan N, Dasgupta N, Lichfouste E, editors. Nanoscience in food and agriculture 1, Sustainable agriculture reviews, vol. 20. Cham: Springer; 2016. p. 229–46.

    Chapter  Google Scholar 

  • Rai M, Yadav A, Gade A. Current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol. 2008;28(4):277–84.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan S, Nandita D, Bhavapriya R, Ganesh SA, Chidambaram R, Ashutosh K. Microwave irradiation-assisted hybrid chemical approach for titanium dioxide nanoparticle synthesis: microbial and cytotoxicological evaluation. Environ Sci Pollut Res. 2016;23:12287–302.

    Article  CAS  Google Scholar 

  • Ranjan S, Nandita D, Sudandiradoss C, Ramalingam C, Ashutosh K. A novel approach to evaluate titanium dioxide nanoparticle-protein interaction through docking: an insight into the mechanism of action. Proc Natl Acad Sci India Sect B Biol Sci. 2017;87(3):937–43.

    Article  CAS  Google Scholar 

  • Ratner M, Ratner D. Nanotechnology: a gentle introduction to the next big idea. Upper Saddle River: Prentice Hall; 2003. p. 1–18.

    Google Scholar 

  • Raza H, Raza TZ. Introducing nanoengineering and nanotechnology to the first year students through an interactive seminar course. J Nano Educ. 2013;4:41–6.

    Article  Google Scholar 

  • Rezaie HR, Shokuhfar A, Arianpour F. Nanocomposite materials from theory to application. In: Andreas OA, Shokuhfar A, editors. New frontiers of nanoparticles and nanocomposite materials. Berlin/Heidelberg: Springer; 2013. p. 171–232.

    Google Scholar 

  • Richards R, Bonnemann H. Synthetic approaches to metallic nanomaterials. In: CSSR K, Hormes J, Leuschner C, editors. Nanofabrication towards biomedical applications: techniques, tools, applications, and impact. Weinheim: Wiley; 2005. p. 3–32.

    Google Scholar 

  • Rocco MC. National nanotechnology initiative – past, present, future. In: Goddard WA, Brenner DW, Lyshevski SE, Iafrate GJ, editors. Handbook on nanoscience, engineering and technology. 2nd ed. Boca Raton: Taylor and Francis/CRC Press; 2007. p. 3.1–3.26.

    Google Scholar 

  • Rocco MC, Mirkin CA, Hersam MC. Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Dordrecht: Springer; 2011.

    Book  Google Scholar 

  • Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–92.

    Article  CAS  PubMed  Google Scholar 

  • Rosei F. Nanostructured surfaces: challenges and frontiers in nanotechnology. J Phys Condens Matter. 2004;1:S1373–436.

    Article  CAS  Google Scholar 

  • Royal Society & The Royal Academy of Engineering. Nanoscience and nanotechnologies. 2004. https://royalsociety.org/~/media/Royal_Society_Content/policy/publications/2004/9693.pdf. Accessed 18 Aug 2019.

  • Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnol. 2004;2(3):1–6.

    Google Scholar 

  • Saleh TA. Nanomaterials for pharmaceuticals determination. Bioenergetics. 2016;5(1):1000226.

    Article  CAS  Google Scholar 

  • Saleh TA, Gupta VK. Nanomaterial and polymer membranes, synthesis, characterization, and applications. Amsterdam: Elsevier; 2016.

    Google Scholar 

  • Sanchez C, Belleville P, Popall M, Nicole L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev. 2011;40:696–753.

    Article  CAS  PubMed  Google Scholar 

  • Sandhiya S, Dkhar SA, Surendiran A. Emerging trends of nanomedicineean overview. Fundam Clin Pharmacol. 2009;23(3):263–9.

    Article  CAS  PubMed  Google Scholar 

  • Sarma S, Das R, Brar S, Verma M, Tyagi R, Surampalli R, et al. Fundamental characteristics and their influence on fate and behavior of nanomaterials in environments. In: Brar SK, Verma M, Tyagi RD, Surampalli RY, Zhang TC, editors. Nanomaterials in the environment. 1st ed. Reston: American Society of Civil Engineers; 2015. p. 1–26.

    Google Scholar 

  • Sato K, Fukushima T, Katayama-Yoshida H. Super-paramagnetic blocking phenomena and room-temperature ferromagnetism in wide band-gap dilute magnetic semiconductor (Ga, Mn) N. Jpn J Appl Phys. 2007;46:L682–4.

    Article  CAS  Google Scholar 

  • Schmitt-Rink S, Miller D, Chemla DS. Theory of the linear and nonlinear optical properties of semiconductor microcrystallites. Phys Rev B. 1987;35:8113–25.

    Article  CAS  Google Scholar 

  • Schwarz JA, Contescu CI, Putyera K. Dekker encyclopedia of nanoscience and nanotechnology, vol. 4. Boca Raton: CRC Press; 2004.

    Google Scholar 

  • Seshan K, editor. Handbook of thin-film deposition processes and techniques-principles, methods, equipment and applications. 2nd ed. Norwich/New York: Noyes/William Andrew Publications; 2002. p. 1–430.

    Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS. Natural inorganic nanoparticles-formation, fate, and toxicity in the environment. Chem Soc Rev. 2015;44(23):8410–23.

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Lara S, Tlali S. Effects of size and shape on the specific heat, melting entropy and enthalpy of nanomaterials. J Taibah Univ Sci. 2017;11(6):922–9.

    Article  Google Scholar 

  • Smith AM, Nie S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res. 2010;43(2):190–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sozer N, Kokini JL. Nanotechnology and its applications in the food sector. Trends Biotechnol. 2009;27:82–9.

    Article  CAS  PubMed  Google Scholar 

  • Stucky GD, Mac Dougall JE. Quantum confinement and host/guest chemistry: probing a new dimension. Science. 1990;247:669–78.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto Y, Pou P, Custance O, Jelinek P, Abe M, Perez R, et al. Complex patterning by vertical interchange atom manipulation using atomic force microscopy. Science. 2008;322:413–7.

    Article  CAS  PubMed  Google Scholar 

  • Sun CQ. Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem. 2007;35(1):1–159.

    Article  CAS  Google Scholar 

  • Sundaresan A, Bhargavi R, Rangarajan N, Siddesh U, Rao C. Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides. Phys Rev B. 2006;74:161306.

    Article  CAS  Google Scholar 

  • Taniguchi T. On the basic concept of nanotechnology. In: Proceedings of the international conference of production engineering, Tokyo, part II. Japan Society of precision Engineering. 1974. p. 18–23.

    Google Scholar 

  • Thomas S, Rafiei S, Maghsoodlou S. Afzali a foundations of nanotechnology, volume two: nanoelements formation and interaction. New York: Apple Academic Press; 2014.

    Book  Google Scholar 

  • Tiwari JN, Tiwari RN, Kim KS. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog Mater Sci. 2012;57:724–803.

    Article  CAS  Google Scholar 

  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  • Torchilin V. Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev. 2011;63(3):131–5.

    Article  CAS  PubMed  Google Scholar 

  • Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Rejeski D, et al. Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Nanotechnology. 2015;6:1769–80.

    CAS  Google Scholar 

  • Vander Heiden MG. Targeting cancer metabolism: a therapeutic window opens. Nat Rev Drug Discov. 2011;10(9):671–84.

    Article  CAS  PubMed  Google Scholar 

  • Wagner S, Gondikas A, Neubauer E, Hofmann T, von der Kammer F. Spot the difference: engineered and natural nanoparticles in the environment-release, behavior, and fate. Angew Chem Int Ed. 2014;53(46):12398–419.

    CAS  Google Scholar 

  • Wang M, Thanou M. Targeting nanoparticles to cancer. Pharmacol Res. 2010;62(2):90–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Xia Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. NanoLett. 2004;4:2047–50.

    Article  CAS  Google Scholar 

  • Wang B, Xue D, Shi Y, Xue F. Titania 1D nanostructured materials: synthesis, properties and applications. In: Prescott WV, Schwartz AI, editors. Nanorods, nanotubes and nanomaterials research Progress. NewYork: Nova Science Publishers; 2008. p. 163–201.

    Google Scholar 

  • Wang R, Billone PS, Mullett WM. Nanomedicine in action: an overview of cancer Nanomedicine on the market and in clinical trials. J Nanomater. 2013;2013:629681.

    Google Scholar 

  • Wani IA. Nanomaterials, novel preparation routes, and characterizations. In: Shah MA, Bhat MA, Davim JP, editors. Nanotechnology applications for improvements in energy efficiency and environmental management, vol. 2015. Hershey: IGI Global Publishers; 2015. p. 1–40.

    Google Scholar 

  • Wardak A, Gorman ME, Swami N, Deshpande S. Identification of risks in the life cycle of nanotechnology-based products. J Ind Ecol. 2008;12:435–48.

    Article  CAS  Google Scholar 

  • West JL, Halas NJ. Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng. 2003;5:285–92.

    Article  CAS  PubMed  Google Scholar 

  • Wong EW, Sheehan PE, Lieber CM. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science. 1997;277:1971–5.

    Article  CAS  Google Scholar 

  • Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, et al. Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater. 2011;7:3496–504.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A. Crystallography of quasiperiodic crystals. Acta Crystallogr A Found Crystallogr. 1996;52:509–60.

    Article  Google Scholar 

  • Yaya A, Agyei-Tuffour B, Dodoo-Arhin D, Nyankson E, Annan E, Konadu DS, et al. Layered nanomaterials- a review. Glob J Eng Des Technol. 2012;1:32–41.

    Google Scholar 

  • Yokoyama M. Drug targeting with nano-sized carrier systems. J Artif Organs. 2005;8:77–84.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sun D, Yongqing FU. Superhard nanocomposite coatings: review article. J Mater Sci Technol. 2002;18(6):485–91.

    Google Scholar 

  • Zhao Y, Li F, Zhang R, Evans DG, Duan X. Preparation of layered doublehydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps. Chem Mater. 2002;14:4286–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, J.K., Patel, A., Bhatia, D. (2021). Introduction to Nanomaterials and Nanotechnology. In: Patel, J.K., Pathak, Y.V. (eds) Emerging Technologies for Nanoparticle Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-030-50703-9_1

Download citation

Publish with us

Policies and ethics