Skip to main content

Abstract

The use of botulinum toxin type A (BoNT-A) in pain conditions is continuously growing largely because of its long-lasting effect after local application and safety profile. These unique features distinguish BoNT-A from other conventional and adjuvant analgesic drugs. Furthermore, BoNT-A diminishes only the pathological pain, without affecting the normal pain threshold. Preclinical data from several complex pain models suggested the central site of its action on pain after retrograde axonal transport from the peripheral site of application. Further investigations of the mechanism of BoNT-A antinociceptive action are ongoing as well as experiments on new recombinant BoNTs with higher selectivity for nociceptive neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crofford LJ (2015). Chronic Pain: Where the Body Meets the Brain. Trans Am Clin Climatol Assoc. 126:167–83.

    Google Scholar 

  2. Loeser JD, Treede RD. The Kyoto protocol of IASP basic pain terminology. Pain. 2008;137(3):473–7. https://doi.org/10.1016/j.pain.2008.04.025.

    Article  PubMed  Google Scholar 

  3. Kosek E, Cohen M, Baron R, Gebhart GF, Mico JA, Rice AS, Rief W, Sluka AK. Do we need a third mechanistic descriptor for chronic pain states? Pain. 2016;157(7):1382–6. https://doi.org/10.1097/j.pain.0000000000000507.

    Article  PubMed  Google Scholar 

  4. Granan LP. We do not need a third mechanistic descriptor for chronic pain states! Not yet. Pain. 2017;158(1):179. https://doi.org/10.1097/j.pain.0000000000000735.

    Article  PubMed  Google Scholar 

  5. Heinricher MM, Tavares I, Leith JL, Lumb BM. Descending control of nociception: specificity, recruitment and plasticity. Brain Res Rev. 2008;60(1):214–25. https://doi.org/10.1016/j.brainresrev.2008.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beecher HK. The measurement of pain: prototype for the quantitative study of subjective responses. Pharmacol Rev. 1957;9(1):59–209.

    CAS  PubMed  Google Scholar 

  7. Rothman SS. Lessons from the living cell: the culture of science and the limits of reductionism. New York: McGraw-Hill; 2002. ISBN 0-07-137820-0.

    Google Scholar 

  8. Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, Reading AE. Pain measurement: an overview. Pain. 1985;22:1–31. https://doi.org/10.1016/0304-3959(85)90145-9.

    Article  CAS  PubMed  Google Scholar 

  9. Gregory N, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An overview of animal models of pain: disease models and outcome measures. J Pain. 2013;14(11):1255–69. https://doi.org/10.1016/j.jpain.2013.06.008.

    Article  PubMed  Google Scholar 

  10. Kurejova M, Nattenmüller U, Hildebrandt U, Selvaraj D, Stösser S, Kuner R. An improved behavioural assay demonstrates that ultrasound vocalizations constitute a reliable indicator of chronic cancer pain and neuropathic pain. Mol Pain. 2010;6:18. https://doi.org/10.1186/1744-8069-6-18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, Lacroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, van den Maagdenberg AM, Ferrari MD, Craig KD, Mogil JS. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9. https://doi.org/10.1038/nmeth.1455.

    Article  CAS  PubMed  Google Scholar 

  12. Akintola T, Raver C, Studlack P, Uddin O, Masri R, Keller A. The grimace scale reliably assesses chronic pain in a rodent model of trigeminal neuropathic pain. Neurobiol Pain. 2017;2:13–7. https://doi.org/10.1016/j.ynpai.2017.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Haefeli M, Elfering A. Pain assessment. Eur Spine J. 2006;15(Suppl 1):S17–24. https://doi.org/10.1007/s00586-005-1044-x.

    Article  PubMed  Google Scholar 

  14. Martucci KT, Mackey SC. Neuroimaging of pain: human evidence and clinical relevance of central nervous system processes and modulation. Anesthesiology. 2018;128(6):1241–54. https://doi.org/10.1097/ALN.0000000000002137.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang S, Masuyer G, Zhang J, Shen Y, Lundin D, Henriksson L, Miyashita SI, Martínez-Carranza M, Dong M, Stenmark P. Identification and characterization of a novel botulinum neurotoxin. Nat Commun. 2017;8:14130. https://doi.org/10.1038/ncomms14130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pier CL, Chen C, Tepp WH, Lin G, Janda KD, Barbieri JT, Pellett S, Johnson EA. Botulinum neurotoxin subtype A2 enters neuronal cells faster than subtype A1. FEBS Lett. 2011;585(1):199–206. https://doi.org/10.1016/j.febslet.2010.11.045.

    Article  CAS  PubMed  Google Scholar 

  17. Blasi J, Chapman ER, Link E, Binz T, Yamasaki S, De Camilli P, Südhof TC, Niemann H, Jahn R. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 1993;365(6442):160–3. https://doi.org/10.1038/365160a0.

    Article  CAS  PubMed  Google Scholar 

  18. Schiavo G, Santuci A, Dasgupta BR, Mehta PP, Jontes J, Benfenati F, Wilson M, Montecucco C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993;335(1):99–103a. https://doi.org/10.1016/0014-5793(93)80448-4.

    Article  CAS  PubMed  Google Scholar 

  19. Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83(24):2247–55. https://doi.org/10.1212/WNL.0000000000001079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W, Malone M, Swanson J, Kennedy JL, Barr C. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry. 2005;10:998–1005. https://doi.org/10.1038/sj.mp.4001722.

    Article  CAS  PubMed  Google Scholar 

  21. Dolly JO, Black J, Williams RS, Melling J. Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature. 1984;307(5950):457–60. https://doi.org/10.1038/307457a0.

    Article  CAS  PubMed  Google Scholar 

  22. Montecucco C. How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci. 1986;11:314–7.

    Article  CAS  Google Scholar 

  23. Rummel A. Double receptor anchorage of botulinum neurotoxins accounts for their exquisite neurospecificity. Curr Top Microbiol Immunol. 2013;364:61–90. https://doi.org/10.1007/978-3-642-33570-9_4.

    Article  CAS  PubMed  Google Scholar 

  24. Antonucci F, Rossi C, Gianfranceschi L, Rossetto O, Caleo M. Long-distance retrograde effects of botulinum neurotoxin A. J Neurosci. 2008;2;28(14):3689–96. https://doi.org/10.1523/JNEUROSCI.0375-08.2008.

    Article  CAS  Google Scholar 

  25. Matak I, Bach-Rojecky L, Filipović B, Lacković Z. Behavioral and immunohistochemical evidence for central antinociceptive activity of botulinum toxin A. Neuroscience. 2011;186:201–7. https://doi.org/10.1016/j.neuroscience.2011.04.026.

    Article  CAS  PubMed  Google Scholar 

  26. Caleo M, Spinelli M, Colosimo F, Matak I, Rossetto O, Lackovic Z, Restani L. Transsynaptic action of botulinum neurotoxin type A at central cholinergic boutons. J Neurosci. 2018;38(48):10329–37. https://doi.org/10.1523/JNEUROSCI.0294-18.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitamura M, Igimi S, Furukawa K, Furukawa K. Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta. 2005;1741(1–2):1–3. https://doi.org/10.1016/j.bbadis.2005.04.005.

    Article  CAS  PubMed  Google Scholar 

  28. Montecucco C, Rasotto MB. On botulinum neurotoxin variability. mBio. 2015;6(1):e02131–14. https://doi.org/10.1128/mBio.02131-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Matak I, Lacković Z. Botulinum toxin A, brain and pain. Prog Neurobiol. 2014;119–120:39–59. https://doi.org/10.1016/j.pneurobio.2014.06.001.

    Article  CAS  PubMed  Google Scholar 

  30. Bach-Rojecky L, Lacković Z. Central origin of the antinociceptive action of botulinum toxin type A. Pharmacol Biochem Behav. 2009;94(2):234–8. https://doi.org/10.1016/j.pbb.2009.08.012pain.

    Article  CAS  PubMed  Google Scholar 

  31. Bach-Rojecky L, Salković-Petrisić M, Lacković Z. Botulinum toxin type A reduces pain supersensitivity in experimental diabetic neuropathy: bilateral effect after unilateral injection. Eur J Pharmacol. 2010;633(1–3):10–4. https://doi.org/10.1016/j.ejphar.2010.01.020.

    Article  CAS  PubMed  Google Scholar 

  32. Favre-Guilmard C, Auguet M, Chabrier PE. Different antinociceptive effects of botulinum toxin type A in inflammatory and peripheral polyneuropathic rat models. Eur J Pharmacol. 2009;617(1–3):48–53. https://doi.org/10.1016/j.ejphar.2009.06.047.

    Article  CAS  PubMed  Google Scholar 

  33. Matak I, Riederer P, Lacković Z. Botulinum toxin’s axonal transport from periphery to the spinal cord. Neurochem Int. 2012;61(2):236–9. https://doi.org/10.1016/j.neuint.2012.05.001.

    Article  CAS  PubMed  Google Scholar 

  34. Matak I, Rossetto O, Lacković Z. Botulinum toxin type A selectivity for certain types of pain is associated with capsaicin-sensitive neurons. Pain. 2014;155(8):1516–26. https://doi.org/10.1016/j.pain.2014.04.027.

    Article  CAS  PubMed  Google Scholar 

  35. Filipović B, Matak I, Bach-Rojecky L, Lacković Z. Central action of peripherally applied botulinum toxin type A on pain and dural protein extravasation in rat model of trigeminal neuropathy. PLoS One. 2012;7(1):e29803. https://doi.org/10.1371/journal.pone.0029803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu C, Xie N, Lian Y, Xu H, Chen C, Zheng Y, Chen Y, Zhang H. Central antinociceptive activity of peripherally applied botulinum toxin type A in lab rat model of trigeminal neuralgia. Springerplus. 2016;5:431. https://doi.org/10.1186/s40064-016-2071-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lacković Z, Filipović B, Matak I, Helyes Z. Activity of botulinum toxin type A in cranial dura: implications for treatment of migraine and other headaches. Br J Pharmacol. 2016;173(2):279–91. https://doi.org/10.1111/bph.13366.

    Article  CAS  PubMed  Google Scholar 

  38. Drinovac Vlah V, Filipović B, Bach-Rojecky L, Lacković Z. Role of central versus peripheral opioid system in antinociceptive and anti-inflammatory effect of botulinum toxin type A in trigeminal region. Eur J Pain. 2018;22(3):583–91. https://doi.org/10.1002/ejp.1146.

    Article  CAS  PubMed  Google Scholar 

  39. Drinovac V, Bach-Rojecky L, Lacković Z. Association of antinociceptive action of botulinum toxin type A with GABA-A receptor. J Neural Transm (Vienna). 2014;121(6):665–9. https://doi.org/10.1007/s00702-013-1150-6.

    Article  CAS  Google Scholar 

  40. Drinovac V, Bach-Rojecky L, Matak I, Lacković Z. Involvement of μ-opioid receptors in antinociceptive action of botulinum toxin type A. Neuropharmacology. 2013;270:331–7. https://doi.org/10.1016/j.neuropharm.2013.02.011.

    Article  CAS  Google Scholar 

  41. Mika J, Rojewska E, Makuch W, Korostynski M, Luvisetto S, Marinelli S, Pavone F, Przewlocka B. The effect of botulinum neurotoxin A on sciatic nerve injury-induced neuroimmunological changes in rat dorsal root ganglia and spinal cord. Neuroscience. 2011;175:358–66. https://doi.org/10.1016/j.neuroscience.2010.11.040.

    Article  CAS  PubMed  Google Scholar 

  42. Vacca V, Marinelli S, Luvisetto S, Pavone F. Botulinum toxin A increases analgesic effects of morphine, counters development of morphine tolerance and modulates glia activation and μ opioid receptor expression in neuropathic mice. Brain Behav Immun. 2013;32:40–50. https://doi.org/10.1016/j.bbi.2013.01.088.

    Article  CAS  PubMed  Google Scholar 

  43. Finocchiaro A, Marinelli S, De Angelis F, Vacca V, Luvisetto S, Pavone F. Botulinum toxin B affects neuropathic pain but not functional recovery after peripheral nerve injury in a mouse model. Toxins. 2018;10(3):128. https://doi.org/10.3390/toxins10030128.

    Article  CAS  PubMed Central  Google Scholar 

  44. Marinelli S, Vacca V, Ricordy R, Uggenti C, Tata AM, Luvisetto S, Pavone F. The analgesic effect on neuropathic pain of retrogradely transported botulinum neurotoxin A involves Schwann cells and astrocytes. PLoS One. 2012;7(10):e47977. https://doi.org/10.1371/journal.pone.0047977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. da Silva LB, Poulsen JN, Arendt-Nielsen L, Gazerani P. Botulinum neurotoxin type A modulates vesicular release of glutamate from satellite glial cells. J Cell Mol Med. 2015;19(8):1900–9. https://doi.org/10.1111/jcmm.12562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Villa G, Ceruti S, Zanardelli M, Magni G, Jasmin L, Ohara PT, Abbracchio MP. Temporomandibular joint inflammation activates glial and immune cells in both the trigeminal ganglia and in the spinal trigeminal nucleus. Mol Pain. 2010;6:89. https://doi.org/10.1186/1744-8069-6-89.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shi X, Gao C, Wang L, Chu X, Shi Q, Yang H, Li T. Botulinum toxin type A ameliorates adjuvant-arthritis pain by inhibiting microglial activation-mediated neuroinflammation and intracellular molecular signaling. Toxicon. 2019;178:33–40. https://doi.org/10.1016/j.toxicon.2019.12.153.

    Article  CAS  PubMed  Google Scholar 

  48. Lew MF, Chinnapongse R, Zhang Y, Corliss M. RimabotulinumtoxinB effects on pain associated with cervical dystonia: results of placebo and comparator-controlled studies. Int J Neurosci. 2010;120(4):298–300. https://doi.org/10.3109/00207451003668408.

    Article  CAS  PubMed  Google Scholar 

  49. Fadeyi MO, Adams QM. Use of botulinum toxin type B for migraine and tension headaches. Am J Health Syst Pharm. 2002;59(19):1860–2. https://doi.org/10.1093/ajhp/59.19.1860.

    Article  PubMed  Google Scholar 

  50. Grogan PM, Alvarez MV, Jones L. Headache direction and aura predict migraine responsiveness to rimabotulinumtoxinB. Headache. 2013;53(1):126–36. https://doi.org/10.1111/j.1526-4610.2012.02288.x.

    Article  PubMed  Google Scholar 

  51. Huang PP, Khan I, Suhail MS, Malkmus S, Yaksh TL. Spinal botulinum neurotoxin B: effects on afferent transmitter release and nociceptive processing. PLoS One. 2011;6(4):e19126. https://doi.org/10.1371/journal.pone.0019126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Marino MJ, Terashima T, Steinauer JJ, Eddinger KA, Yaksh TL, Xu Q. Botulinum toxin B in the sensory afferent: transmitter release, spinal activation, and pain behavior. Pain. 2014;155(4):674–84. https://doi.org/10.1016/j.pain.2013.12.009.

    Article  CAS  PubMed  Google Scholar 

  53. Park HJ, Marino MJ, Rondon ES, Xu Q, Yaksh TL. The effects of intraplantar and intrathecal botulinum toxin type B on tactile allodynia in mono and polyneuropathy in the mouse. Anesth Analg. 2015;121(1):229–38. https://doi.org/10.1213/ANE.0000000000000777.

    Article  CAS  PubMed  Google Scholar 

  54. Ramachandran R, Lam C, Yaksh TL. Botulinum toxin in migraine: role of transport in trigemino-somatic and trigemino-vascular afferents. Neurobiol Dis. 2015;79:111–22. https://doi.org/10.1016/j.nbd.2015.04.011.

    Article  CAS  PubMed  Google Scholar 

  55. Meng J, Ovsepian SV, Wang J, Pickering M, Sasse A, Aoki KR, Lawrence GW, Dolly JO. Activation of TRPV1 mediates calcitonin gene-related peptide release, which excites trigeminal sensory neurons and is attenuated by a retargeted botulinum toxin with anti-nociceptive potential. J Neurosci. 2009;29(15):4981–92. https://doi.org/10.1523/JNEUROSCI.5490-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meng J, Wang J, Lawrence G, Dolly JO. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential. J Cell Sci. 2007;120(Pt 16):2864–74. https://doi.org/10.1242/jcs.012211.

    Article  CAS  PubMed  Google Scholar 

  57. Meng J, Dolly JO, Wang J. Selective cleavage of SNAREs in sensory neurons unveils protein complexes mediating peptide exocytosis triggered by different stimuli. Mol Neurobiol. 2014;50(2):574–88. https://doi.org/10.1007/s12035-014-8665-1.

    Article  CAS  PubMed  Google Scholar 

  58. Foster KA. A new wrinkle on pain relief: re-engineering clostridial neurotoxins for analgesics. Drug Discov Today. 2005;10(8):563–9. https://doi.org/10.1016/S1359-6446(05)03389-1.

    Article  CAS  PubMed  Google Scholar 

  59. Duggan MJ, Quinn CP, Chaddock JA, Purkiss JR, Alexander FC, Doward S, Fooks SJ, Friis LM, Hall YH, Kirby ER, Leeds N, Moulsdale HJ, Dickenson A, Green GM, Rahman W, Suzuki R, Shone CC, Foster K. Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel conjugate of a Clostridium botulinum toxin A endopeptidase fragment and Erythrina cristagalli lectin. J Biol Chem. 2002;277(38):34846–52. https://doi.org/10.1074/jbc.M202902200.

    Article  CAS  PubMed  Google Scholar 

  60. Maiarù M, Leese C, Certo M, Echeverria-Altuna I, Mangione AS, Arsenault J, Davletov B, Hunt SP. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med. 2018;10(450):eaar7384. https://doi.org/10.1126/scitranslmed.aar7384.

    Article  CAS  PubMed  Google Scholar 

  61. Mangione AS, Obara I, Maiarú M, Geranton SM, Tassorelli C, Ferrari E, Leese C, Davletov B, Hunt SP. Nonparalytic botulinum molecules for the control of pain. Pain. 2016;157(5):1045–55. https://doi.org/10.1097/j.pain.0000000000000478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vazquez-Cintron E, Tenezaca L, Angeles C, Syngkon A, Liublinska V, Ichtchenko K, Band P. Pre-clinical study of a novel recombinant botulinum neurotoxin derivative engineered for improved safety. Sci Rep. 2016;6:30429. https://doi.org/10.1038/srep30429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang J, Zurawski TH, Meng J, Lawrence G, Olango WM, Finn DP, Wheeler L, Dolly JO. A dileucine in the protease of botulinum toxin A underlies its long-lived neuroparalysis: transfer of longevity to a novel potential therapeutic. J Biol Chem. 2011;286(8):6375–85. https://doi.org/10.1074/jbc.M110.181784.

    Article  CAS  PubMed  Google Scholar 

  64. Wang J, Casals-Diaz L, Zurawski T, Meng J, Moriarty O, Nealon J, Edupuganti OP, Dolly O. A novel therapeutic with two SNAP-25 inactivating proteases shows long-lasting anti-hyperalgesic activity in a rat model of neuropathic pain. Neuropharmacology. 2017;118:223–32. https://doi.org/10.1016/j.neuropharm.2017.03.026.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko Lacković .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lacković, Z., Matak, I., Bach-Rojecky, L. (2020). Basic Science of Pain and Botulinum Toxin. In: Jabbari, B. (eds) Botulinum Toxin Treatment in Surgery, Dentistry, and Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-50691-9_5

Download citation

Publish with us

Policies and ethics