Skip to main content

Increasing Water and Energy Productivity via Replacing Abiotic Stress Tolerant Forages in East of Zayandeh Rud River Basin

  • Chapter
  • First Online:
Standing up to Climate Change

Abstract

One of the sub-sectors of agriculture that consumes the highest amount of water in the crops production sector is the forage production. Among sustainable strategies to reduce water consumption and maintain sustainability of production is replacement of drought tolerant forage crops with high water consumption forage crops in arid and semi-arid regions such as east of Zayandehrud River Basin. The objectives in the chapter are expression of the importance of water and energy productivity in agricultural basins especially Zayandehrud River basin, introduction of sorghum as one the most tolerant forage crops with features related to water productivity as alternative of corn with high water demand.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams C, Erickson J (2016) Yield enhancement by short-term imposition of severe water deficit in the vegetative growth stage of grain sorghum. J Agron Crop Sci 1–23

    Google Scholar 

  • Ajabshirchi Y (2006) Management of agricultural energy consumption. Agriculture Faculty, Tabriz University, Iran

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, Rome, Italy, p 299

    Google Scholar 

  • Amanloo A, Ghasemi-Mobtaker H (2013) Energy balance and sensitivity analysis of inputs for forage maize production in Iran. Int J Agric Crop Sci 5:377–384

    Google Scholar 

  • Assefa Y, Roozeboom KL, Thompson CR, Schlegel AG, Stone L, Lingenfelser GE (2014) Corn and grain sorghum comparison: all things considered. Elsevier, Boston, MA

    Google Scholar 

  • Bean B (2008) Forage sorghum and silage corn: yield, quality and water. In: California & forage symposium and Western seed conference, San Diego, CA, 2–4 Dec 2008

    Google Scholar 

  • Bernard JK (2016) Comparison of sorghum silage vs. corn silage. Available at https://www.txanc.org/docs/Bernard-Comparison-of-Sorghum-silage-vs-Corn-silage_MSRNC2015-Author-Approved.pdf

  • Borba LFP, Ferreira MA, Guim A, Tabosa JN, Gomes LHS, Santos VLF (2012) Nutritive value of different silage sorghum (Sorghum bicolor L. Moench) cultivars. Acta Sci Anim Sci 4(2):123–129

    Google Scholar 

  • Borrell AK, van Oosterom EJ, Mullet JE, George-Jaeggli B, Jordan DR, Klein PE, Hammer GL (2014) Stay-green alleles individually enhance grain yield in sorghum under drought by modifying canopy development and water uptake patterns. New Phytol 203(3):817–830. https://doi.org/10.1111/nph.12869

    Article  PubMed  Google Scholar 

  • Cai X, Rosegrant MW (2003) World water productivity: current situation and future options. CAB. Water productivity in agriculture

    Google Scholar 

  • Contreras-Govea FE, Marsalis MA, Lauriault LM, Bean BW (2010) Forage sorghum nutritive value: a review. Plant management network

    Google Scholar 

  • Damavandi A, Latifi N, Dashtaban AR (2008) Evaluation of seed vigor tests and itís field efficiency in Forage Sorghum (Sorghum bicolor L.). J Agric Sci Nat Res 14(5):40–41. (In Persian with English Abstract)

    Google Scholar 

  • Devries J, Toenniessen G (2001) Securing the harvest Biotechnology, breeding and seed systems for African crops. CABI, Wallingford, UK

    Book  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  Google Scholar 

  • Erdal G, Esengun K, Erdal H, Gunduz O (2007) Energy use and economical analysis of sugar beet production in Tokat Province of Turkey. Energy 32:35–41

    Article  Google Scholar 

  • Faiazbakhsh MT, Alizadeh P (2018) Comparison of forage maize and forage sorghum (Sorghum bicolor L.) in terms of energy consumption and global warming potential in Gorgan weather conditions. J Agroecol 10(1):218–233

    Google Scholar 

  • FAO (2017) Water for sustainable food and agriculture a report produced for the G20 Presidency of Germany. Food and Agriculture Organization of the United Nations, Rome. p 33. ISBN: 978-92-5-109977-3

    Google Scholar 

  • FAOSTAT Crop production data (2019) Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Fartoot-Enaiat F, Musavi-Nik SM, Asghar-Poor MR (2017) Energy efficiency, greenhouse gas emissions and economic analysis of forage sorghum agriculture in Sistan area. J Agric Knowl Sustain Prod 72(3):33–43

    Google Scholar 

  • Heydari N (2014) Assessment of agriculture water productivity in Iran, and the performance of water policies and plans of the government in this regard. SID Majlis Rahbord 21(78):177–199

    Google Scholar 

  • Howell TA, Evett SR, Tolk JA, Copeland KS, Colaizzi PD, Gowda PH (2008) Evapotranspiration of corn and forage sorghum for silage. In: Proceedings of ASCE-EWRI world water and environmental resources congress, (CD-ROM), ASCE, Reston, VA. World environmental and water resources congress 2008 Ahupua’a

    Google Scholar 

  • Hussain I, Hussain Z, Sial MH, Akram W, Hussain MF (2007) Optimal cropping pattern and water productivity: a case of Punjab Canal. J Agron 6(4):526–533

    Article  Google Scholar 

  • ICRISAT (2015) Sorghum (Sorghum bicolor L. Moench). International Crops Research Institute for the Semi-Arid Tropics

    Google Scholar 

  • Kocheki A, Hosseini M (1994) Energy efficiency in agricultural ecosystems. Ferdowsi University of Mashhad Publication. In Persian

    Google Scholar 

  • McCorkle DA, Hanselka D, Bean B, McCollum T, Amosson S, Klose S, Waller M (2007) The economic benefits of forage sorghum silage as an alternative crop. http://publications.tamu.edu/FORAGE/PUB_forage_Economic%20Benefits%20of%20Forage.pdf

  • Mohammadian F, Alizadeh A, Neiriz S, Arabi A (2007) Sustainable agronomic design with emphasis on virtual water exchange. Irrigat Drain J Iran 2(1):110–126. In Persian

    Google Scholar 

  • Molden D (2006) Accounting for water use and productivity. In: User-producer conference on water accounting for integrated water resources management, the Netherlands, 22–24 May 2006, pages 27

    Google Scholar 

  • Neto AB, Reis RHP, Cabral LS, Abreu JG, Sousa DP, Sousa FG (2017) Nutritional value of sorghum silage of different purposes. Ciência e Agrotecnologia 41(3):288–299. https://doi.org/10.1590/1413-70542017413038516

  • OGTR (2017) The biology of Sorghum bicolor (L.) Moench subsp. bicolor (Sorghum). Australian Government Office of the Gene Technology Regulator. Available at http://www.ogtr.gov.au/internet/ogtr/publishing.nsf/content/5DCF28AD2F3779C4CA257D4E001819B9/$File/Sorghum%20Biology%20Version%201.1%20July%202017.pdf

  • Pacific Seeds (2008) Pacific Seeds grain sorghum agronomy guide 2008/09. Pacific Seeds

    Google Scholar 

  • Raes D, Steduto P, Hsiao TC, Fereres E (2012) AquaCrop. FAO Crop – Water productivity model to simulate yield response to water. Ref. Manual. Ver. 4. FAO. Land and Water Division, Rome, Italy

    Google Scholar 

  • Rostamza M, Richards RA, Watt M (2013) Response of millet and sorghum to a varying water supply around the primary and nodal roots. Ann Bot 112:439–446

    Article  CAS  Google Scholar 

  • Salemi HR, Amin MSM (2010) Water resources development and water utilization in the Gavkhuni River Basin, Iran. J Agric Sci Technol 4(3):60–65

    Google Scholar 

  • Salemi H, Amin MS, Lee TS, Mousavi SF, Ganji A, Yusoff MK (2011) Application of AquaCrop model in deficit irrigation management of Winter wheat in arid region. Afr J Agric Res 610:2204–2215

    Google Scholar 

  • Salemi H, Torabi M, Heidarisoltanabadi M (2018) Assessment of water and energy productivity in silage sorghum in arid regions. In: 2nd Sorghum ID European Sorghum Congress Milan, 7 & 8 Nov 2018

    Google Scholar 

  • Santi LP, Haris N, Mulyanto D (2018) Effect of bio-silica on drought tolerance in plants. IOP Conf Ser Earth Environ Sci 183(1):012014. https://doi.org/10.1088/1755-1315/183/1/012014

    Article  Google Scholar 

  • Singh V, Oosterom EJV, Jordan DR, Messina CD, Cooper M, Hammer GL (2010) Morphological and architectural development of root systems in sorghum and maize. Plant Soil 333:287–299. https://doi.org/10.1007/s11104-010-0343-0

    Article  CAS  Google Scholar 

  • Sukumaran S, Xiang W, Bean SR, Pedersen J, Kresovich S, Tuinstra MR, Martha T, Hamblin P, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Genome 5:126–135

    Article  CAS  Google Scholar 

  • Torabi M, Salami H, Heidarisoltanabadi M (2018) Evaluation of yield and nutritional traits of sorghum and corn cultivars in response to water stress. In: 2nd Sorghum ID European Sorghum Congress Milan, 7 & 8 Nov 2018

    Google Scholar 

  • Wortmann CS, Liska AJ, Ferguson RB, Lyon DJ, Klein RN, Dweikt I (2008) Dryland performance of sweet sorghum and grain crops for biofuel in Nebraska. Agron J 102:319e26

    Google Scholar 

  • Xue D, Zhang X, Lu X, Chen G, Chen ZH (2017) Molecular and evolutionary mechanisms of cuticular wax for plant drought tolerance. Front Plant Sci 8:621

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Torabi, M., Salemi, H., Heidarisoltanabadi, M. (2020). Increasing Water and Energy Productivity via Replacing Abiotic Stress Tolerant Forages in East of Zayandeh Rud River Basin. In: Mohajeri, S., Horlemann, L., Besalatpour, A.A., Raber, W. (eds) Standing up to Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-50684-1_17

Download citation

Publish with us

Policies and ethics