Abstract
Rapid decline in soil fertility is a crux challenge facing soil sustainability and food security across the globe. Microbial biotechnology has proven to be a veritable tool in proffering solutions to soil infertility challenges, hence it is herein perceived and explicated as a viable tool to boost soil fertility in Africa. This review brings into light the inseparable romance between soil and microorganisms, as means provided by nature to maintain soil fertility. Some microorganisms are involved in soil formation, geochemical cycles, organic matter decomposition, humification, redox reactions, soil pH changes and reactions, reclamations and bioremediations, all as means of maintaining soil fertility. In microbial biotechnology application in soil, soil beneficial microorganisms are manipulated, stimulated and engineered into soil inoculants, and soil-plant associations that enhance soil nutrient availability. Thus, these beneficial microorganisms are nitrogen fixers, phosphate and micronutrient solubilizers, and bioremediators for polluted fields. Genomic sequence and expression of traits techniques provide insight into linking microbial communities with known structural characteristics to specific functional diversity. This offers unprecedented and innovative approach in the development of ‘microbe-based strategies’ for the management of cultivated soils as well as incorporation of same in predictive ecological models for climate change impacts particularly in Africa.
Keywords
- Weathering
- Nutrient availability
- Microbial inoculants
- Biostimulation
- Soil genomics
This is a preview of subscription content, access via your institution.
Buying options
References
Akoto-Danso, E. K., Manka’abusi, D., Steiner, C., Werner, S., Haering, V., Lompo, D. J.-P., Nyarko, G., Marschner, B., Drechsel, P., & Buerkert, A. (2019). Nutrient flows and balances in intensively managed vegetable production of two West African cities. Journal of Plant Nutrition and Soil Science, 182, 229–243.
Allen, J. F. (2010). Redox homeostasis in the emergence of life. On the constant internal environment of nascent living cells. Journal of Cosmology, 10, 3362–3373.
Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., & Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. Journal of Environmental Management, 231, 182–188.
Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Viñas, M., Acea, M., & Kidd, P. (2012). Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. The Journal of Hazardous Materials, 217, 350–359.
Bohrerova, Z., Stralkova, R., Podesvova, J., Bohrer, G., & Pokorny, E. (2004). The relationship between redox potential and nitrification under different sequences of crop rotations. Soil and Tillage Research, 77, 25–33.
Cabello-Conejo, M., Becerra-Castro, C., Prieto-Fernández, A., Monterroso, C., Saavedra-Ferro, A., Mench, M., & Kidd, P. (2014). Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant and Soil, 379, 35–50.
Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15–27.
Cardenas, E., & Tiedje, J. M. (2008). New tools for discovering and characterizing microbial diversity. Current Opinion in Biotechnology, 19, 544–549.
Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., & Heimann, M. (2013). In G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
Cocking, E. C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil, 252, 169–175.
Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., & Hopkins, F. M. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392–3404.
Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105–2113.
Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Cavaloc, Y., & Amir, H. (2019). Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 29, 1–15.
DeLong, E. F. (2002). Microbial population genomics and ecology. Current Opinion in Microbiology, 5, 520–524.
DeLong, E. F., & Pace, N. R. (2001). Environmental diversity of bacteria and archaea. Systematic Biology, 50, 470–478.
Denarie, J., Maillet, F., Poinsot, V., Andre, O., Becard, G., Gueunier, M., Cromer, L., Haouy, A., & Giraudet, D. (2016). Lipochito-oligosaccharides stimulating arbuscular mycorrhizal symbiosis. Google Patents.
Dent, D., & Cocking, E. (2017). Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The greener nitrogen revolution. Agriculture and Food Security, 6, 7.
Douds, D., Jr., & Reider, C. (2003). Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biological Agriculture and Horticulture, 21, 91–102.
Dungait, J. A., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781–1796.
Edgerton, D., Harris, J., Birch, P., & Bullock, P. (1995). Linear relationship between aggregate stability and microbial biomass in three restored soils. Soil Biology & Biochemistry, 27, 1499–1501.
Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034–1039.
Fenchel, T., Blackburn, H., King, G. M., & Blackburn, T. H. (2012). Bacterial biogeochemistry: The ecophysiology of mineral cycling. Amsterdam: Academic.
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103, 626–631.
Fornara, D., Steinbeiss, S., McNamara, N., Gleixner, G., Oakley, S., Poulton, P., Macdonald, A., & Bardgett, R. D. (2011). Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925–1934.
Galal, Y., El-Ghandour, I., Osman, M., & Raouf, A. (2003). The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15N techniques. Symbiosis, 34, 171–183.
Ghose, M. K. (2005). Soil conservation for rehabilitation and revegetation of mine-degraded land. TERI Information Digest on Energy and Environment, 4, 137–150.
Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.
Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004). Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 305, 1457–1462.
Hamilton, T. L., Lange, R. K., Boyd, E. S., & Peters, J. W. (2011). Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environmental Microbiology, 13, 2204–2215.
Holland, T., Vukicevich, E., Thomsen, C., Pogiatzis, A., Hart, M., & Bowen, P. (2018). Arbuscular mycorrhizal fungi in viticulture: Should we use biofertilizers? Catalyst: Discovery into Practice, 2, 59–63.
Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389–417.
Jacinthe, P., Lal, R., & Kimble, J. (2002). Effects of wheat residue fertilization on accumulation and biochemical attributes of organic carbon in a Central Ohio Luvisol. Soil Science, 167, 750–758.
Jansen, A., & Kielstein, J. (2011). The new face of enterohaemorrhagic Escherichia coli infections. Eurosurveillance, 16, 19898.
Jetiyanon, K., & Plianbangchang, P. (2010). Dose-responses of Bacillus cereus RS87 for growth enhancement in various Thai rice cultivars. Canadian Journal of Microbiology, 56, 1011–1019.
Jones, J. B., Jr. (2014). Complete guide for growing plants hydroponically. Boca Raton: CRC Press.
Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28, 61–69.
Kim, C., Kecskés, M. L., Deaker, R. J., Gilchrist, K., New, P. B., Kennedy, I. R., Kim, S., & Sa, T. (2005). Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. The Canadian Journal of Microbiology, 51, 948–956.
Kohler, J., Caravaca, F., Azcón, R., Díaz, G. & Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, 42–48.
Lal, R. (2001). Potential of soil carbon sequestration in forest ecosystems to mitigate the greenhouse effect. SSSA Special Publication, 57, 137–154.
Lal, R., Follett, R. F., Stewart, B. A., & Kimble, J. M. (2007). Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 172, 943–956.
Lamers, L. P., Van Diggelen, J. M., Op Den Camp, H. J., Visser, E. J., Lucassen, E. C., Vile, M. A., Jetten, M. S., Smolders, A. J., & Roelofs, J. G. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: A review. Frontiers in Microbiology, 3, 156.
Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587.
Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.
Li, Z. B., Lu, X., Teng, H. H., Chen, Y., Zhao, L., Ji, J., Chen, J., & Liu, L. (2019a). Specificity of low molecular weight organic acids on the release of elements from lizardite during fungal weathering. Geochimica et Cosmochimica Acta, 256, 20–34.
Li, Y., Wang, S., Lu, M., Zhang, Z., Chen, M., Li, S., & Cao, R. (2019b). Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils. Soil and Tillage Research, 186, 146–151.
Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, 495–503.
Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M., & Blunt-Harris, E. L. (2000). Reduction of humic substances and Fe (III) by hyperthermophilic microorganisms. Chemical Geology, 169, 289–298.
Macyk, T., & Richens, T. (2002). Carbon sequestration–reforestation and soil stability. Edmonton: Alberta Research Council Inc.
Martinez, R. E., & Ferris, F. G. (2005). Review of the surface chemical heterogeneity of bacteriogenic iron oxides: Proton and cadmium sorption. American Journal of Science, 305, 854–871.
Merry, R. (2009). Acidity and alkalinity of soils. Environmental and Ecological Chemistry, 2, 115–131.
Moberly, J. G., Borch, T., Sani, R. K., Spycher, N. F., Şengör, S. S., Ginn, T. R., & Peyton, B. M. (2009). Heavy metal–mineral associations in Coeur d’Alene river sediments: A synchrotron-based analysis. Water, Air, and Soil Pollution, 201, 195–208.
Muhrizal, S., Shamshuddin, J., Husni, M., & Fauziah, I. (2003). Alleviation of aluminum toxicity in an acid sulfate soil in Malaysia using organic materials. Communications in Soil Science and Plant Analysis, 34, 2993–3011.
Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M.-H., Oldroyd, G. E. D., Poole, P. S., Udvardi, M. K., Voigt, C. A., Ané, J.-M., & Peters, J. W. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82, 3698–3710.
Nakmee, P. S., Techapinyawat, S., & Ngamprasit, S. (2016). Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agriculture and Natural Resources, 50, 173–178.
Neaman, A., Chorover, J., & Brantley, S. L. (2005). Implications of the evolution of organic acid moieties for basalt weathering over geological time. The American Journal of Science, 305, 147–185.
Okafor, N. (2016). Modern industrial microbiology and biotechnology. Boca Raton: CRC Press.
Oldroyd, G. E., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.
Panhwar, Q. A., Naher, U. A., Jusop, S., Othman, R., Latif, M. A., & Ismail, M. R. (2014). Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One, 9, e97241.
Panhwar, Q. A., Naher, U. A., Shamshuddin, J., Radziah, O., & Hakeem, K. R. (2016). Management of acid sulfate soils for sustainable rice cultivation in Malaysia. In Soil science: Agricultural and environmental prospectives (pp. 91–104). Cham: Springer.
Pellegrino, E., Turrini, A., Gamper, H. A., Cafà, G., Bonari, E., Young, J. P. W., & Giovannetti, M. (2012). Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytologist, 194, 810–822.
Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505.
Prasanna, R., Nain, L., Pandey, A. K., & Saxena, A. K. (2012). Microbial diversity and multidimensional interactions in the rice ecosystem. Archives of Agronomy and Soil Science, 58, 723–744.
Qian, Y. (2011). Microbes breathe iron: Characterization of dissimilatory iron reduction by Shewanella oneidensis MR-1. University Park: Pennsylvania State University.
Raklami, A., Bechtaoui, N., Tahiri, A.-i., Anli, M., Meddich, A., & Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Frontiers in Microbiology, 10, 1106.
Ravi, R. K., Anusuya, S., Balachandar, M., & Muthukumar, T. (2019). Microbial interactions in soil formation and nutrient cycling. In Mycorrhizosphere and pedogenesis (pp. 363–382). Singapore: Springer.
Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. In Advances in agronomy (Vol. 124, pp. 37–89). Amsterdam: Elsevier.
Rosselló-Mora, R., & Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews, 25, 39–67.
Schoonover, J. E., & Crim, J. F. (2015). An introduction to soil concepts and the role of soils in watershed management. Journal of Contemporary Water Research and Education, 154, 21–47.
Sheoran, V., Sheoran, A., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3, 13.
Singh, B. K., Campbell, C. D., Sorenson, S. J., & Zhou, J. (2009). Soil genomics. Nature Reviews Microbiology, 7, 756.
Song, H. (2013). Detection in near-infrared spectroscopy of soils. Beijing: Chemistry Industry Press.
Stahr, K. (2015). Scheffer/Schachtschabel soil science. Berlin/Hei: Springer.
Strickland, M. S., & Rousk, J. (2010). Considering fungal: Bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42, 1385–1395.
Tokarz, E., & Urban, D. (2015). Soil redox potential and its impact on microorganisms and plants of wetlands. Journal of Ecological Engineering, 16, 20–30.
Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.
Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21, 641–651.
United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs.
Vázquez, M. M., César, S., Azcón, R., & Barea, J. M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 15, 261–272.
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.
Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.
Wallenstein, M. D., & Bell, C. W. (2019). Synergistic bacterial consortia for mobilizing soil phosphorus. Google Patents.
Wang, B., & Allison, S. D. (2019). Emergent properties of organic matter decomposition by soil enzymes. Soil Biology and Biochemistry, 136, 107522.
Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4, 752.
Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.
Williamson, J., & Johnson, D. (1991). Microbiology of soils at opencast coal sites. II. Population transformations occurring following land restoration and the influence of ryegrass/fertilizer amendments. Journal of Soil Science, 42, 9–15.
Yuan, Q., Hernández, M., Dumont, M. G., Rui, J., Scavino, A. F., & Conrad, R. (2018). Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biology and Biochemistry, 116, 99–109.
Zachara, J. M., Smith, S. C., & Fredrickson, J. K. (2000). The effect of biogenic Fe (II) on the stability and sorption of Co (II) EDTA2− to goethite and a subsurface sediment. Geochimica et Cosmochimica Acta, 64, 1345–1362.
Zhang, J., Zhou, S., Sun, H., Lü, F., & He, P. (2019). Three-year rice grain yield responses to coastal mudflat soil properties amended with straw biochar. Journal of Environmental Management, 239, 23–29.
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., & Wanek, W. (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry, 128, 45–55.
Zimmerman, A. E., Martiny, A. C., & Allison, S. D. (2013). Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. The ISME Journal, 7, 1187.
Acknowledgement
UIM received research support from the North-West University postdoctoral scheme. And is thus acknowledged. Also, the funding provided by the ‘Alexander von Humboldt Foundation’ to OCB through the ‘Humboldt Research Fellowship for Postdoctoral Researchers’ programme is acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Uzoh, I.M., Okebalama, C.B., Igwe, C.A., Babalola, O.O. (2021). Management of Soil-Microorganism: Interphase for Sustainable Soil Fertility Management and Enhanced Food Security. In: Babalola, O.O. (eds) Food Security and Safety . Springer, Cham. https://doi.org/10.1007/978-3-030-50672-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-50672-8_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50671-1
Online ISBN: 978-3-030-50672-8
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)