Skip to main content

Management of Soil-Microorganism: Interphase for Sustainable Soil Fertility Management and Enhanced Food Security

Abstract

Rapid decline in soil fertility is a crux challenge facing soil sustainability and food security across the globe. Microbial biotechnology has proven to be a veritable tool in proffering solutions to soil infertility challenges, hence it is herein perceived and explicated as a viable tool to boost soil fertility in Africa. This review brings into light the inseparable romance between soil and microorganisms, as means provided by nature to maintain soil fertility. Some microorganisms are involved in soil formation, geochemical cycles, organic matter decomposition, humification, redox reactions, soil pH changes and reactions, reclamations and bioremediations, all as means of maintaining soil fertility. In microbial biotechnology application in soil, soil beneficial microorganisms are manipulated, stimulated and engineered into soil inoculants, and soil-plant associations that enhance soil nutrient availability. Thus, these beneficial microorganisms are nitrogen fixers, phosphate and micronutrient solubilizers, and bioremediators for polluted fields. Genomic sequence and expression of traits techniques provide insight into linking microbial communities with known structural characteristics to specific functional diversity. This offers unprecedented and innovative approach in the development of ‘microbe-based strategies’ for the management of cultivated soils as well as incorporation of same in predictive ecological models for climate change impacts particularly in Africa.

Keywords

  • Weathering
  • Nutrient availability
  • Microbial inoculants
  • Biostimulation
  • Soil genomics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-50672-8_25
  • Chapter length: 20 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-50672-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)

References

  • Akoto-Danso, E. K., Manka’abusi, D., Steiner, C., Werner, S., Haering, V., Lompo, D. J.-P., Nyarko, G., Marschner, B., Drechsel, P., & Buerkert, A. (2019). Nutrient flows and balances in intensively managed vegetable production of two West African cities. Journal of Plant Nutrition and Soil Science, 182, 229–243.

    CrossRef  CAS  Google Scholar 

  • Allen, J. F. (2010). Redox homeostasis in the emergence of life. On the constant internal environment of nascent living cells. Journal of Cosmology, 10, 3362–3373.

    Google Scholar 

  • Attarzadeh, M., Balouchi, H., Rajaie, M., Dehnavi, M. M., & Salehi, A. (2019). Growth and nutrient content of Echinacea purpurea as affected by the combination of phosphorus with arbuscular mycorrhizal fungus and Pseudomonas florescent bacterium under different irrigation regimes. Journal of Environmental Management, 231, 182–188.

    CrossRef  CAS  PubMed  Google Scholar 

  • Becerra-Castro, C., Monterroso, C., Prieto-Fernández, A., Rodríguez-Lamas, L., Loureiro-Viñas, M., Acea, M., & Kidd, P. (2012). Pseudometallophytes colonising Pb/Zn mine tailings: A description of the plant–microorganism–rhizosphere soil system and isolation of metal-tolerant bacteria. The Journal of Hazardous Materials, 217, 350–359.

    CrossRef  PubMed  CAS  Google Scholar 

  • Bohrerova, Z., Stralkova, R., Podesvova, J., Bohrer, G., & Pokorny, E. (2004). The relationship between redox potential and nitrification under different sequences of crop rotations. Soil and Tillage Research, 77, 25–33.

    CrossRef  Google Scholar 

  • Cabello-Conejo, M., Becerra-Castro, C., Prieto-Fernández, A., Monterroso, C., Saavedra-Ferro, A., Mench, M., & Kidd, P. (2014). Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator Alyssum pintodasilvae. Plant and Soil, 379, 35–50.

    CrossRef  CAS  Google Scholar 

  • Caporale, A. G., & Violante, A. (2016). Chemical processes affecting the mobility of heavy metals and metalloids in soil environments. Current Pollution Reports, 2, 15–27.

    CrossRef  CAS  Google Scholar 

  • Cardenas, E., & Tiedje, J. M. (2008). New tools for discovering and characterizing microbial diversity. Current Opinion in Biotechnology, 19, 544–549.

    CrossRef  CAS  PubMed  Google Scholar 

  • Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., & Heimann, M. (2013). In G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Cocking, E. C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil, 252, 169–175.

    CrossRef  CAS  Google Scholar 

  • Conant, R. T., Ryan, M. G., Ågren, G. I., Birge, H. E., Davidson, E. A., Eliasson, P. E., Evans, S. E., Frey, S. D., Giardina, C. P., & Hopkins, F. M. (2011). Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Global Change Biology, 17, 3392–3404.

    CrossRef  Google Scholar 

  • Craine, J. M., Morrow, C., & Fierer, N. (2007). Microbial nitrogen limitation increases decomposition. Ecology, 88, 2105–2113.

    CrossRef  PubMed  Google Scholar 

  • Crossay, T., Majorel, C., Redecker, D., Gensous, S., Medevielle, V., Durrieu, G., Cavaloc, Y., & Amir, H. (2019). Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants? Mycorrhiza, 29, 1–15.

    CrossRef  Google Scholar 

  • DeLong, E. F. (2002). Microbial population genomics and ecology. Current Opinion in Microbiology, 5, 520–524.

    CrossRef  PubMed  Google Scholar 

  • DeLong, E. F., & Pace, N. R. (2001). Environmental diversity of bacteria and archaea. Systematic Biology, 50, 470–478.

    CrossRef  CAS  PubMed  Google Scholar 

  • Denarie, J., Maillet, F., Poinsot, V., Andre, O., Becard, G., Gueunier, M., Cromer, L., Haouy, A., & Giraudet, D. (2016). Lipochito-oligosaccharides stimulating arbuscular mycorrhizal symbiosis. Google Patents.

    Google Scholar 

  • Dent, D., & Cocking, E. (2017). Establishing symbiotic nitrogen fixation in cereals and other non-legume crops: The greener nitrogen revolution. Agriculture and Food Security, 6, 7.

    CrossRef  Google Scholar 

  • Douds, D., Jr., & Reider, C. (2003). Inoculation with mycorrhizal fungi increases the yield of green peppers in a high P soil. Biological Agriculture and Horticulture, 21, 91–102.

    CrossRef  Google Scholar 

  • Dungait, J. A., Hopkins, D. W., Gregory, A. S., & Whitmore, A. P. (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781–1796.

    CrossRef  Google Scholar 

  • Edgerton, D., Harris, J., Birch, P., & Bullock, P. (1995). Linear relationship between aggregate stability and microbial biomass in three restored soils. Soil Biology & Biochemistry, 27, 1499–1501.

    CrossRef  CAS  Google Scholar 

  • Falkowski, P. G., Fenchel, T., & Delong, E. F. (2008). The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034–1039.

    CrossRef  CAS  PubMed  Google Scholar 

  • Fenchel, T., Blackburn, H., King, G. M., & Blackburn, T. H. (2012). Bacterial biogeochemistry: The ecophysiology of mineral cycling. Amsterdam: Academic.

    Google Scholar 

  • Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103, 626–631.

    CrossRef  CAS  Google Scholar 

  • Fornara, D., Steinbeiss, S., McNamara, N., Gleixner, G., Oakley, S., Poulton, P., Macdonald, A., & Bardgett, R. D. (2011). Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland. Global Change Biology, 17, 1925–1934.

    CrossRef  Google Scholar 

  • Galal, Y., El-Ghandour, I., Osman, M., & Raouf, A. (2003). The effect of inoculation by mycorrhizae and rhizobium on the growth and yield of wheat in relation to nitrogen and phosphorus fertilization as assessed by 15N techniques. Symbiosis, 34, 171–183.

    CAS  Google Scholar 

  • Ghose, M. K. (2005). Soil conservation for rehabilitation and revegetation of mine-degraded land. TERI Information Digest on Energy and Environment, 4, 137–150.

    Google Scholar 

  • Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32, 390–399.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., & DeLong, E. F. (2004). Reverse methanogenesis: Testing the hypothesis with environmental genomics. Science, 305, 1457–1462.

    CrossRef  CAS  PubMed  Google Scholar 

  • Hamilton, T. L., Lange, R. K., Boyd, E. S., & Peters, J. W. (2011). Biological nitrogen fixation in acidic high-temperature geothermal springs in Yellowstone National Park, Wyoming. Environmental Microbiology, 13, 2204–2215.

    CrossRef  CAS  PubMed  Google Scholar 

  • Holland, T., Vukicevich, E., Thomsen, C., Pogiatzis, A., Hart, M., & Bowen, P. (2018). Arbuscular mycorrhizal fungi in viticulture: Should we use biofertilizers? Catalyst: Discovery into Practice, 2, 59–63.

    Google Scholar 

  • Husson, O. (2013). Redox potential (Eh) and pH as drivers of soil/plant/microorganism systems: A transdisciplinary overview pointing to integrative opportunities for agronomy. Plant and Soil, 362, 389–417.

    CrossRef  CAS  Google Scholar 

  • Jacinthe, P., Lal, R., & Kimble, J. (2002). Effects of wheat residue fertilization on accumulation and biochemical attributes of organic carbon in a Central Ohio Luvisol. Soil Science, 167, 750–758.

    CrossRef  CAS  Google Scholar 

  • Jansen, A., & Kielstein, J. (2011). The new face of enterohaemorrhagic Escherichia coli infections. Eurosurveillance, 16, 19898.

    CrossRef  PubMed  Google Scholar 

  • Jetiyanon, K., & Plianbangchang, P. (2010). Dose-responses of Bacillus cereus RS87 for growth enhancement in various Thai rice cultivars. Canadian Journal of Microbiology, 56, 1011–1019.

    CrossRef  CAS  PubMed  Google Scholar 

  • Jones, J. B., Jr. (2014). Complete guide for growing plants hydroponically. Boca Raton: CRC Press.

    CrossRef  Google Scholar 

  • Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28, 61–69.

    CrossRef  CAS  PubMed  Google Scholar 

  • Kim, C., Kecskés, M. L., Deaker, R. J., Gilchrist, K., New, P. B., Kennedy, I. R., Kim, S., & Sa, T. (2005). Wheat root colonization and nitrogenase activity by Azospirillum isolates from crop plants in Korea. The Canadian Journal of Microbiology, 51, 948–956.

    CAS  PubMed  Google Scholar 

  • Kohler, J., Caravaca, F., Azcón, R., Díaz, G. & Roldán, A. (2015). The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Science of the Total Environment, 514, 42–48.

    Google Scholar 

  • Lal, R. (2001). Potential of soil carbon sequestration in forest ecosystems to mitigate the greenhouse effect. SSSA Special Publication, 57, 137–154.

    CAS  Google Scholar 

  • Lal, R., Follett, R. F., Stewart, B. A., & Kimble, J. M. (2007). Soil carbon sequestration to mitigate climate change and advance food security. Soil Science, 172, 943–956.

    CrossRef  CAS  Google Scholar 

  • Lamers, L. P., Van Diggelen, J. M., Op Den Camp, H. J., Visser, E. J., Lucassen, E. C., Vile, M. A., Jetten, M. S., Smolders, A. J., & Roelofs, J. G. (2012). Microbial transformations of nitrogen, sulfur, and iron dictate vegetation composition in wetlands: A review. Frontiers in Microbiology, 3, 156.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lareen, A., Burton, F., & Schäfer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehmann, J., & Kleber, M. (2015). The contentious nature of soil organic matter. Nature, 528, 60–68.

    CrossRef  CAS  PubMed  Google Scholar 

  • Li, Z. B., Lu, X., Teng, H. H., Chen, Y., Zhao, L., Ji, J., Chen, J., & Liu, L. (2019a). Specificity of low molecular weight organic acids on the release of elements from lizardite during fungal weathering. Geochimica et Cosmochimica Acta, 256, 20–34.

    CrossRef  CAS  Google Scholar 

  • Li, Y., Wang, S., Lu, M., Zhang, Z., Chen, M., Li, S., & Cao, R. (2019b). Rhizosphere interactions between earthworms and arbuscular mycorrhizal fungi increase nutrient availability and plant growth in the desertification soils. Soil and Tillage Research, 186, 146–151.

    CrossRef  Google Scholar 

  • Liu, L., Li, J., Yue, F., Yan, X., Wang, F., Bloszies, S. & Wang, Y. (2018). Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere, 194, 495–503.

    Google Scholar 

  • Lovley, D. R., Kashefi, K., Vargas, M., Tor, J. M., & Blunt-Harris, E. L. (2000). Reduction of humic substances and Fe (III) by hyperthermophilic microorganisms. Chemical Geology, 169, 289–298.

    CrossRef  CAS  Google Scholar 

  • Macyk, T., & Richens, T. (2002). Carbon sequestration–reforestation and soil stability. Edmonton: Alberta Research Council Inc.

    Google Scholar 

  • Martinez, R. E., & Ferris, F. G. (2005). Review of the surface chemical heterogeneity of bacteriogenic iron oxides: Proton and cadmium sorption. American Journal of Science, 305, 854–871.

    CrossRef  CAS  Google Scholar 

  • Merry, R. (2009). Acidity and alkalinity of soils. Environmental and Ecological Chemistry, 2, 115–131.

    Google Scholar 

  • Moberly, J. G., Borch, T., Sani, R. K., Spycher, N. F., Şengör, S. S., Ginn, T. R., & Peyton, B. M. (2009). Heavy metal–mineral associations in Coeur d’Alene river sediments: A synchrotron-based analysis. Water, Air, and Soil Pollution, 201, 195–208.

    CrossRef  CAS  Google Scholar 

  • Muhrizal, S., Shamshuddin, J., Husni, M., & Fauziah, I. (2003). Alleviation of aluminum toxicity in an acid sulfate soil in Malaysia using organic materials. Communications in Soil Science and Plant Analysis, 34, 2993–3011.

    CrossRef  CAS  Google Scholar 

  • Mus, F., Crook, M. B., Garcia, K., Garcia Costas, A., Geddes, B. A., Kouri, E. D., Paramasivan, P., Ryu, M.-H., Oldroyd, G. E. D., Poole, P. S., Udvardi, M. K., Voigt, C. A., Ané, J.-M., & Peters, J. W. (2016). Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Applied and Environmental Microbiology, 82, 3698–3710.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakmee, P. S., Techapinyawat, S., & Ngamprasit, S. (2016). Comparative potentials of native arbuscular mycorrhizal fungi to improve nutrient uptake and biomass of Sorghum bicolor Linn. Agriculture and Natural Resources, 50, 173–178.

    CrossRef  CAS  Google Scholar 

  • Neaman, A., Chorover, J., & Brantley, S. L. (2005). Implications of the evolution of organic acid moieties for basalt weathering over geological time. The American Journal of Science, 305, 147–185.

    CrossRef  CAS  Google Scholar 

  • Okafor, N. (2016). Modern industrial microbiology and biotechnology. Boca Raton: CRC Press.

    CrossRef  Google Scholar 

  • Oldroyd, G. E., & Dixon, R. (2014). Biotechnological solutions to the nitrogen problem. Current Opinion in Biotechnology, 26, 19–24.

    CrossRef  CAS  PubMed  Google Scholar 

  • Panhwar, Q. A., Naher, U. A., Jusop, S., Othman, R., Latif, M. A., & Ismail, M. R. (2014). Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One, 9, e97241.

    CrossRef  PubMed  PubMed Central  CAS  Google Scholar 

  • Panhwar, Q. A., Naher, U. A., Shamshuddin, J., Radziah, O., & Hakeem, K. R. (2016). Management of acid sulfate soils for sustainable rice cultivation in Malaysia. In Soil science: Agricultural and environmental prospectives (pp. 91–104). Cham: Springer.

    CrossRef  Google Scholar 

  • Pellegrino, E., Turrini, A., Gamper, H. A., Cafà, G., Bonari, E., Young, J. P. W., & Giovannetti, M. (2012). Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytologist, 194, 810–822.

    CrossRef  CAS  PubMed  Google Scholar 

  • Polizzotto, M. L., Kocar, B. D., Benner, S. G., Sampson, M., & Fendorf, S. (2008). Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature, 454, 505.

    CrossRef  CAS  PubMed  Google Scholar 

  • Prasanna, R., Nain, L., Pandey, A. K., & Saxena, A. K. (2012). Microbial diversity and multidimensional interactions in the rice ecosystem. Archives of Agronomy and Soil Science, 58, 723–744.

    CrossRef  Google Scholar 

  • Qian, Y. (2011). Microbes breathe iron: Characterization of dissimilatory iron reduction by Shewanella oneidensis MR-1. University Park: Pennsylvania State University.

    Google Scholar 

  • Raklami, A., Bechtaoui, N., Tahiri, A.-i., Anli, M., Meddich, A., & Oufdou, K. (2019). Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Frontiers in Microbiology, 10, 1106.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  • Ravi, R. K., Anusuya, S., Balachandar, M., & Muthukumar, T. (2019). Microbial interactions in soil formation and nutrient cycling. In Mycorrhizosphere and pedogenesis (pp. 363–382). Singapore: Springer.

    CrossRef  Google Scholar 

  • Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. In Advances in agronomy (Vol. 124, pp. 37–89). Amsterdam: Elsevier.

    Google Scholar 

  • Rosselló-Mora, R., & Amann, R. (2001). The species concept for prokaryotes. FEMS Microbiology Reviews, 25, 39–67.

    CrossRef  PubMed  Google Scholar 

  • Schoonover, J. E., & Crim, J. F. (2015). An introduction to soil concepts and the role of soils in watershed management. Journal of Contemporary Water Research and Education, 154, 21–47.

    CrossRef  Google Scholar 

  • Sheoran, V., Sheoran, A., & Poonia, P. (2010). Soil reclamation of abandoned mine land by revegetation: A review. International Journal of Soil, Sediment and Water, 3, 13.

    Google Scholar 

  • Singh, B. K., Campbell, C. D., Sorenson, S. J., & Zhou, J. (2009). Soil genomics. Nature Reviews Microbiology, 7, 756.

    CrossRef  CAS  PubMed  Google Scholar 

  • Song, H. (2013). Detection in near-infrared spectroscopy of soils. Beijing: Chemistry Industry Press.

    Google Scholar 

  • Stahr, K. (2015). Scheffer/Schachtschabel soil science. Berlin/Hei: Springer.

    Google Scholar 

  • Strickland, M. S., & Rousk, J. (2010). Considering fungal: Bacterial dominance in soils–methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 42, 1385–1395.

    CrossRef  CAS  Google Scholar 

  • Tokarz, E., & Urban, D. (2015). Soil redox potential and its impact on microorganisms and plants of wetlands. Journal of Ecological Engineering, 16, 20–30.

    CrossRef  Google Scholar 

  • Torsvik, V., & Øvreås, L. (2002). Microbial diversity and function in soil: From genes to ecosystems. Current Opinion in Microbiology, 5, 240–245.

    CrossRef  CAS  PubMed  Google Scholar 

  • Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21, 641–651.

    CrossRef  CAS  PubMed  Google Scholar 

  • United Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. New York: United Nations, Department of Economic and Social Affairs.

    Google Scholar 

  • Vázquez, M. M., César, S., Azcón, R., & Barea, J. M. (2000). Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Applied Soil Ecology, 15, 261–272.

    CrossRef  Google Scholar 

  • Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255, 571–586.

    CrossRef  CAS  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., & Vivanco, J. M. (2003). Root exudation and rhizosphere biology. Plant Physiology, 132, 44–51.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallenstein, M. D., & Bell, C. W. (2019). Synergistic bacterial consortia for mobilizing soil phosphorus. Google Patents.

    Google Scholar 

  • Wang, B., & Allison, S. D. (2019). Emergent properties of organic matter decomposition by soil enzymes. Soil Biology and Biochemistry, 136, 107522.

    CrossRef  CAS  Google Scholar 

  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4, 752.

    CrossRef  CAS  PubMed  Google Scholar 

  • Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends in Biotechnology, 27, 591–598.

    CrossRef  CAS  PubMed  Google Scholar 

  • Williamson, J., & Johnson, D. (1991). Microbiology of soils at opencast coal sites. II. Population transformations occurring following land restoration and the influence of ryegrass/fertilizer amendments. Journal of Soil Science, 42, 9–15.

    CrossRef  Google Scholar 

  • Yuan, Q., Hernández, M., Dumont, M. G., Rui, J., Scavino, A. F., & Conrad, R. (2018). Soil bacterial community mediates the effect of plant material on methanogenic decomposition of soil organic matter. Soil Biology and Biochemistry, 116, 99–109.

    CrossRef  CAS  Google Scholar 

  • Zachara, J. M., Smith, S. C., & Fredrickson, J. K. (2000). The effect of biogenic Fe (II) on the stability and sorption of Co (II) EDTA2− to goethite and a subsurface sediment. Geochimica et Cosmochimica Acta, 64, 1345–1362.

    CrossRef  CAS  Google Scholar 

  • Zhang, J., Zhou, S., Sun, H., Lü, F., & He, P. (2019). Three-year rice grain yield responses to coastal mudflat soil properties amended with straw biochar. Journal of Environmental Management, 239, 23–29.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Richter, A., & Wanek, W. (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology and Biochemistry, 128, 45–55.

    CrossRef  CAS  PubMed  Google Scholar 

  • Zimmerman, A. E., Martiny, A. C., & Allison, S. D. (2013). Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. The ISME Journal, 7, 1187.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

UIM received research support from the North-West University postdoctoral scheme. And is thus acknowledged. Also, the funding provided by the ‘Alexander von Humboldt Foundation’ to OCB through the ‘Humboldt Research Fellowship for Postdoctoral Researchers’ programme is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola Oluranti Babalola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Uzoh, I.M., Okebalama, C.B., Igwe, C.A., Babalola, O.O. (2021). Management of Soil-Microorganism: Interphase for Sustainable Soil Fertility Management and Enhanced Food Security. In: Babalola, O.O. (eds) Food Security and Safety . Springer, Cham. https://doi.org/10.1007/978-3-030-50672-8_25

Download citation