Skip to main content

Temporal Climate Variability and Staple Cereals in Southern Burkina Faso

  • Chapter
  • First Online:
Towards Water Secure Societies

Abstract

Farming activities are the primary source of livelihood for agro-pastoral communities in the Sahel biogeographic zone in Burkina Faso. The climate variability and change have a direct impact on performance, quantity, and quality of staple cereals yields. Understanding how the crops respond to climate variability is crucial for ensuring adequate crops management and food security. Hence, this paper aims at investigating how different staple cereals respond to certain indicators of climate variability at inter-annual and inter-decadal levels in southern Burkina Faso. In our study, we use regression models and scatter plots. The model results show that climate variability has mixed effects on cereal yields. The study demonstrates the interdependencies among district-scale cereal yields in the study area including maize, sorghum, and millet casually associate with the inter-annual variation of selected climate variability indicators. Maize yields, for example, relate strongly to the rainfall amount variation (R2 = 51.8%) showing high moisture dependence during critical growth stages. Conclusions emphasize the adoption of efficient water conservation and utilization platforms, especially those that have evidently increased yields and strengthening of forecasts dissemination and related climate information services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afifi A, May S, Clark VA` (2003) Computer-aided multivariate analysis. CRC Press

    Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56 FAO, Rome 300

    Google Scholar 

  • Bannayan M, Sanjani S, Alizadeh A, Lotfabadi SS, Mohamadian A (2010) Association between climate indices, aridity index, and rainfed crop yield in northeast of Iran. Field Crops Res 118:105–114

    Google Scholar 

  • Barbier B, Yacouba H, Karambiri H, Zoromé M, Somé B (2009) Human vulnerability to climate variability in the sahel: farmers’ adaptation strategies in Northern Burkina Faso. Environ Manage 43:790–803. https://doi.org/10.1007/s00267-008-9237-9

    Article  PubMed  ADS  Google Scholar 

  • Behnassi M, Pollmann O, Kissinger G (2013) Sustainable food security in the era of local and global environmental change. Dordrecht

    Google Scholar 

  • Blanc É (2012) The impact of climate change on crop yields in Sub-Saharan Africa

    Google Scholar 

  • Borona M, Mbow C, Ouedraogo I (2016) Unstacking high temporal resolution meteorological data for multidimensional analysis of climate variability in southern Burkina Faso. Geogr Tidsskrift-Danish J Geography 116(2):176–189. https://doi.org/10.1080/00167223.2016.1212668

  • Brouwer C, Goffeau A, Heibloem M (1985) Irrigation water management: training manual No. 1-introduction to irrigation. IILRI and FAO, Rome

    Google Scholar 

  • Challinor A, Wheeler T, Garforth C, Craufurd P, Kassam A (2007) Assessing the vulnerability of food crop systems in Africa to climate change. Clim Change 83:381–399

    Article  ADS  Google Scholar 

  • Chang JH (1974) Climate and agriculture: an ecological survey. Aldine

    Google Scholar 

  • Chen C-C, McCarl BA, Schimmelpfennig DE (2004) Yield variability as influenced by climate: a statistical investigation. Clim Change 66:239–261

    Article  Google Scholar 

  • Davies ER (2012) Computer and machine vision: theory, algorithms, practicalities. Elsevier, Waltham

    Google Scholar 

  • Dewberry C (2004) Statistical methods for organizational research: theory and practice. Psychology Press

    Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrig Drain Syst 16:33-45

    Google Scholar 

  • FAO (1993) Soil Tillage in Africa: needs and challenges, vol 69. Food and Agriculture Organization of the United Nations: Land Water Development Division, Rome

    Google Scholar 

  • FAO (2014a) Burkina Faso Country fact sheet on food and agriculture policy trends. FAO. https://www.fao.org/docrep/field/009/i3760e/i3760e.pdf. Accessed 16 June 2015

  • FAO (2014b) Understanding the drought impact of El Niño on the global agricultural areas; An assessment using FAO's Agricultural Stress Index (ASI). FAO, Rome

    Google Scholar 

  • Farmer W, Strzepek K, Schlosser CA, Droogers P, Gao X (2011) A method for calculating reference evapotranspiration on daily time scales. MIT Joint Program on the Science and Policy of Global Change

    Google Scholar 

  • Fontès J et al. (1995) Carte de la végétation et de l'occupation du sol du Burkina Faso: notice explicative. Ministère de la coopération française, Projet Campus, Toulouse, France

    Google Scholar 

  • Geyer CJ (2011) Handbook of markov chain monte carlo. In: Brooks S, Gelman A, Jones G, Meng XL (eds). CRC Press

    Google Scholar 

  • Goyal MR, Harmsen EW (2013) Evapotranspiration: principles and applications for water management. Apple Academic Press

    Google Scholar 

  • Hadgu G, Tesfaye K, Mamo G, Kassa B (2013) Trend and variability of rainfall in Tigray, northern Ethiopia: analysis of meteorological data and farmers’ perception. Acad J Agric Res 1:088–100

    Google Scholar 

  • Haggett P (2002) Encyclopedia of world geography, vol 17. Marshall Cavendish, New York

    Google Scholar 

  • Haile M (2005) Weather patterns, food security and humanitarian response in sub-Saharan Africa Philos Trans R Soc B Biol Sci 360:2169–2182

    Google Scholar 

  • Hengl T et al (2014) SoilGrids 1 km—global soil information based on automated mapping. PLoS One 9:e105992

    Google Scholar 

  • Ingram KT, Roncoli MC, Kirshen PH (2002) Opportunities and constraints for farmers of west Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric Syst 74:331–349. https://doi.org/10.1016/S0308-521X(02)00044-6

    Article  Google Scholar 

  • INSD (2015) Annuaire statistique 2014. Institut National des Statistiques et de la Démographie (INSD), Ouagadougou, Burkina Faso. http://www.insd.bf/n/contenu/pub_periodiques/annuaires_stat/Annuaires_stat_nationaux_BF/Annuaire_stat_2014.pdf

  • IRRI (1976) Proceedings of the symposium on climate & rice. Irri, Los Banos

    Google Scholar 

  • Jalloh A, Rhodes ER, Kollo I, Roy-Macauley H, Sereme P (2011) Nature and management of the soils in West and Central Africa: a review to inform farming systems research and development in the region. CORAF/WECARD, Dakar

    Google Scholar 

  • Kambire H, Abdel-Rahman G, Bacyé B, Dembele Y (2010) Modeling of maize yields in the south-Sudanian zone of Burkina Faso-West Africa American-Eurasian. J Agric Environ Sci 7:195–201s

    Google Scholar 

  • Kandji ST, Verchot L, Mackensen J (2006) Climate change and variability in the Sahel region: impacts and adaptation strategies in the agricultural sector. UNEP and ICRAF, Nairobi

    Google Scholar 

  • Kisaka OM, Mucheru-Muna M, Ngetich F, Mugwe J, Mugendi D, Mairura F (2015) Seasonal rainfall variability and drought characterization: case of eastern arid region, Kenya. In: Leal Filho W, Esilaba AO, Rao KPC, Sridhar G (eds) Adapting African agriculture to climate change. Climate change management. Springer International Publishing, pp 53–71. https://doi.org/10.1007/978-3-319-13000-2_5

  • Lin BB (2011) Resilience in agriculture through crop diversification: adaptive management for environmental change. Bioscience 61:183–193

    Article  Google Scholar 

  • Lobell DB, Field CB (2007) Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett 2:014002

    Google Scholar 

  • Lodoun T, Giannini A, Traoré PS, Somé L, Sanon M, Vaksmann M, Rasolodimby JM (2013) Changes in seasonal descriptors of precipitation in Burkina Faso associated with late 20th century drought and recovery in West Africa. Environ Dev 5:96–108. https://doi.org/10.1016/j.envdev.2012.11.010

  • Maikano I (2006) Generate prototype WCA recommendation maps for selected sorghum (8) and millet (8) cultivars based on updated end-of-season dates (PRODEPAM, activity). ICRISAT, Bamako

    Google Scholar 

  • Mathugama SC, Peiris TSG (2011) Critical evaluation of dry spell research. Int J Basic Appl Sci 11:153–160

    Google Scholar 

  • Mishra A, Hansen JW, Dingkuhn M, Baron C, Traoré SB, Ndiaye O, Ward MN (2008) Sorghum yield prediction from seasonal rainfall forecasts in Burkina Faso. Agric For Meteorol 148:1798–1814

    Article  ADS  Google Scholar 

  • Narasimhan B, Srinivasan R (2005) Development and evaluation of soil moisture deficit index (SMDI) and evapotranspiration deficit index (ETDI) for agricultural drought monitoring. Agric For Meteorol 133:69–88

    Google Scholar 

  • Osborne T, Wheeler T (2013) Evidence for a climate signal in trends of global crop yield variability over the past 50 years. Environ Res Lett 8:024001

    Google Scholar 

  • Ouedraogo I, Savadogo P, Tigabu M, Cole R, Oden PC, Ouadba J-M (2011) Trajectory analysis of forest cover change in the tropical dry forest of Burkina Faso. West Afr Landsc Res 36:303–320. https://doi.org/10.1080/01426397.2011.564861

    Article  Google Scholar 

  • Parry M, Rosenzweig C, Iglesias A, Fischer G, Livermore M (1999) Climate change and world food security: a new assessment. Glob Environ Change 9(Supplement 1):S51–S67. https://doi.org/10.1016/S0959-3780(99)00018-7

    Article  Google Scholar 

  • Porter JR, Semenov MA (2005) Crop responses to climatic variation. Philos Trans R Soc Lond B: Biol Sci 360:2021–2035

    Google Scholar 

  • Rao K, Okwach G (2005) Enhancing productivity of water under variable climate. In: International water management institute conference papers.

    Google Scholar 

  • Rojas O, Li Y, Cumani R (2014) Understanding the drought impact of El Niño on the global agricultural areas: an assessment using FAO’s Agricultural Stress Index (ASI): Food and Agriculture Organization of the United Nations (FAO)

    Google Scholar 

  • Roncoli C, Ingram K, Kirshen P (2001) The costs and risks of coping with drought: livelihood impacts and farmers’ responses in Burkina Faso. Clim Res 19:119–132

    Article  Google Scholar 

  • Rosenzweig C, Iglesias A, Yang X, Epstein PR, Chivian E (2001) Climate change and extreme weather events; implications for food production, plant diseases, and pests. Glob Change Hum Health 2:90–104

    Google Scholar 

  • Rötter R, van de Geijn SC (1999) Climate change effects on plant growth, crop yield and livestock. Clim Change 43:651–681. https://doi.org/10.1023/a:1005541132734

    Article  Google Scholar 

  • Rowhani P, Lobell DB, Linderman M, Ramankutty N (2011) Climate variability and crop production in Tanzania. Agric For Meteorol 151:449–460

    Article  ADS  Google Scholar 

  • Sanginga N, Woomer PL (2009) Integrated soil fertility management in africa: principles, practices, and developmental process. Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture

    Google Scholar 

  • Schneider SH, Easterling WE, Mearns LO (2000) Adaptation: sensitivity to natural variability, agent assumptions and dynamic climate changes. Clim Change 45:203–221

    Google Scholar 

  • Semenov MA, Porter JR (1995) Climatic variability and the modelling of crop yields. Agric For Meteorol 73:265–283. https://doi.org/10.1016/0168-1923(94)05078-K

    Article  ADS  Google Scholar 

  • Simelton E et al. (2011) African farmers’ perceptions of erratic rainfall Sustainability Research Institute Paper

    Google Scholar 

  • Sivakumar M (1988) Predicting rainy season potential from the onset of rains in Southern Sahelian and Sudanian climatic zones of West Africa. Agric For Meteorol 42:295–305

    Article  ADS  Google Scholar 

  • Sivakumar MVK (1992) Empirical analysis of dry spells for agricultural applications in West Africa. J Clim 5:532–539. https://doi.org/10.1175/1520-0442(1992)005%3c0532:eaodsf%3e2.0.co;2

    Article  ADS  Google Scholar 

  • Slingo JM, Challinor AJ, Hoskins BJ, Wheeler TR (2005) Introduction: food crops in a changing climate. Philos Trans R Soc Lond B Biol Sci 360:1983–1989

    Google Scholar 

  • Somé L, Jalloh A, Zougmoré R, Nelson GC, Thomas TS (2013) Burkina Faso. In: Jalloh A, Nelson GC, Thomas TS, Zougmoré RB, Roy-Macauley H (eds) International food policy. Research Institute, Washington

    Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics

    Google Scholar 

  • Traoré S (2000) Drought adaptation of Malian local sorghum ecotypes. Secheresse 11:227–237

    Google Scholar 

  • Tshiala M, Olwoch JM (2010) Impact of climate variability on tomato production in Limpopo Province, South Africa

    Google Scholar 

  • Van der Linden P, Xiaousu D (2001) Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University, Cambridge

    Google Scholar 

  • Wang Y-M, Traore S, Kerh T (2008) Computing and modeling for crop yields in Burkina Faso based on climatic data information. WSEAS Trans Inform Sci Appl 5:832–842

    Google Scholar 

  • West CT, Roncoli C, Ouattara F (2008) Local perceptions and regional climate trends on the central plateau of Burkina Faso. Land Degrad Dev 19:289–304

    Article  Google Scholar 

  • Wood S (2006) generalized additive models: an introduction with R. Taylor & Francis

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Finish Ministry of Foreign Affairs through the World Agroforestry Centre under the BIODEV Project (Building Biocarbon and Rural Development in West Africa). We thank Dr. Richard Coe (ILRI/ICRAF) for input in computation and adjustment of variability descriptors and Dr. David Stern (University of Reading) for clarification in the interpretation of growing season descriptors. We also would like to acknowledge Dr. Jorge De Jesus of ISRIC for his assistance in the extraction of soil type information. We thank the National Meteorology Service of Burkina Faso for providing long-term daily climate data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mwenda Borona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borona, M., Mbow, C., Ouedraogo, I. (2021). Temporal Climate Variability and Staple Cereals in Southern Burkina Faso. In: Ribbe, L., Haarstrick, A., Babel, M., Dehnavi, S., Biesalski, H.K. (eds) Towards Water Secure Societies. Springer, Cham. https://doi.org/10.1007/978-3-030-50653-7_10

Download citation

Publish with us

Policies and ethics