Skip to main content

Creating and Capturing Artificial Emotions in Autonomous Robots and Software Agents

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12128)

Abstract

This paper presents ARTEMIS, a control system for autonomous robots or software agents. ARTEMIS is able to create and capture artificial emotions during interactions with its environment, and we describe the underlying mechanisms for this. The control system also realizes the capturing of knowledge about its past artificial emotions. A specific interpretation of a knowledge graph, called an Agent Knowledge Graph, represents these artificial emotions. For this, we devise a formalism which enriches the traditional factual knowledge in knowledge graphs with the representation of artificial emotions. As proof of concept, we realize a concrete software agent based on the ARTEMIS control system. This software agent acts as a user assistant and executes the user’s orders. The environment of this user assistant consists of autonomous service agents. The execution of user’s orders requires interaction with these autonomous service agents. These interactions lead to artificial emotions within the assistant. The first experiments show that it is possible to realize an autonomous agent with plausible artificial emotions with ARTEMIS and to record these artificial emotions in its Agent Knowledge Graph. In this way, autonomous agents based on ARTEMIS can capture essential knowledge that supports successful planning and decision making in complex dynamic environments and surpass emotionless agents.

Keywords

  • Autonomous agents
  • Artificial emotions
  • Agent Knowledge Graphs

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-50578-3_19
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   79.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-50578-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   99.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Candrlic, S., Katic, M.A., Pavlic, M.: A system for transformation of sentences from the enriched formalized Node of Knowledge record into relational database. Expert Syst. Appl. 115, 442–464 (2019)

    CrossRef  Google Scholar 

  2. Chekol, M.W., Stuckenschmidt, H.: Towards probabilistic bitemporal knowledge graphs. In: Companion of the The Web Conference 2018 (WWW 2018), Lyon, France, 23–27 April 2018, pp. 1757–1762 (2018)

    Google Scholar 

  3. RDFLib Homepage. https://rdflib.readthedocs.io/en/stable/. Accessed 14 Jan 2020

  4. Dörner, D., Schaub, H., Detje, F.: Das Leben von PSI. Über das Zusammenspiel von Kognition, Emotion und Motivation - oder: Eine einfache Theorie komplexer Verhaltensweisen. In: von Lüde, R., Moldt, D., Valk, R. (eds.) Sozionik aktuell, vol. 2. Informatik Universität Hamburg, Hamburg (2001)

    Google Scholar 

  5. Dörner, D.: The mathematics of emotion. In the logic of cognitive systems. In: Fifth International Conference on Cognitive Modelling, 10–12 April 2003. Universitätsverlag Bamberg, Bamberg (2003)

    Google Scholar 

  6. Dörner, D., Gerdes, J.: Motivation, emotion, intelligence. In: ICSAI, Yantai, China (2012)

    Google Scholar 

  7. Dörner, D., Güss, C.D.: PSI: a computational architecture of cognition, motivation, and emotion. Rev. Gen. Psychol. 17(3), 297–317 (2013)

    CrossRef  Google Scholar 

  8. Dominique, J., Fensel, D., Davies, J., González-Cabero, R., Pedrinaci, C.: The service web: a web of billions of services. In: Tselentis, G., et al. (eds.) Towards a Future Internet: A European Research Perspective, pp. 203–216. IOS Press, Amsterdam (2009)

    Google Scholar 

  9. Ehrlinger, L., Woess, W.: Towards a definition of knowledge graphs. In: SEMANTiCS 2016 (Posters and Demos Track), Proceedings, Leipzig, Vol. 1695 (2016)

    Google Scholar 

  10. Gaerdenfors, P.: The Geometry of Meaning: Semantics Based on Conceptual Spaces. The MIT Press, Cambridge (2014)

    CrossRef  Google Scholar 

  11. Graupner, S., Netzad, H.R.M., Singhal, S.: Making processes from best practice frameworks actionable. In: 2009 13th Enterprise Distributed Object Computing Conference Workshops (2009)

    Google Scholar 

  12. Hakak, N.M., Mohd, M., Kirmani, M., Mohd, M.: Emotion analysis: a survey. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix). Manipal University Jaipur, Malaviya (2017)

    Google Scholar 

  13. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of the 24th ACM International Conference on Information and Knowledge Management (CIKM 2015), Melbourne, VIC, Australia, 19–23 October 2015, pp. 623–632 (2015)

    Google Scholar 

  14. Hudlicka. Alternative Theoretical Perspectives on Emotion Representation and Modeling. https://www.slideshare.net/hudlicka. Accessed 14 Jan 2020

  15. LODE: An ontology for Linking Open Descriptions of Events. http://linkedevents.org/ontology/2010-10-07/. Accessed 14 Jan 2020

  16. Marsella, S., Gratch, J., Petta, P.: Computational models of emotion. In: Scherer, K.R., Bänziger, T., Roesch, E. (eds.) A Blueprint for Affective Computing: A Sourcebook and Manual. Oxford Univ Press, Oxford (2010)

    Google Scholar 

  17. Mehrabian, A.: Framework for a comprehensive description and measurement of emotional states. Genet. Soc. Gen. Psychol. Monogr. 121, 339–361 (1995)

    Google Scholar 

  18. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. Dev. Learn. Pers. Soc. Winter 14(4), 261–292 (1996). https://doi.org/10.1007/BF02686918

    CrossRef  Google Scholar 

  19. Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)

    CrossRef  Google Scholar 

  20. Sander, D., Grandjean, D., Scherer, K.R.: A systems approach to appraisal mechanisms in emotion. Neural Netw. 18(4), 317–352 (2005)

    CrossRef  Google Scholar 

  21. Scherer, K. R.: Appraisal considered as a process of multilevel sequential checking. In: Appraisal Processes in Emotion: Theory, Methods, Research, vol. 92(120), p. 57, New York (2001)

    Google Scholar 

  22. Scherer, K.R.: The component process model: architecture for a comprehensive computational model of emergent emotion. In: Scherer, K.R., Bänziger, T., Roesch, E.B. (eds.) Blueprint for Affective Computing: A Sourcebook, pp. 47–70. Oxford University Press, Oxford (2010)

    Google Scholar 

Download references

Acknowledgments

We thank Christoph Lange from Fraunhofer Institute FIT for his valuable comments regarding our work. This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 822404 (QualiChain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Hoffmann, C., Vidal, ME. (2020). Creating and Capturing Artificial Emotions in Autonomous Robots and Software Agents. In: Bielikova, M., Mikkonen, T., Pautasso, C. (eds) Web Engineering. ICWE 2020. Lecture Notes in Computer Science(), vol 12128. Springer, Cham. https://doi.org/10.1007/978-3-030-50578-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50578-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50577-6

  • Online ISBN: 978-3-030-50578-3

  • eBook Packages: Computer ScienceComputer Science (R0)