Skip to main content

Normative Measurements of Orbital Walls and Contents

  • Chapter
  • First Online:
Manual of Normative Measurements in Head and Neck Imaging

Abstract

This chapter reviews the normal measurements of the orbital contents and walls on imaging, with a focus on computed tomography (CT) and magnetic resonance imaging (MRI). The typical dimensions are provided as a general guide, acknowledging that these can vary among individuals, particularly with respect to age, gender, and ethnicity. Nevertheless, these reference measurements can serve as a general guide for recognizing abnormalities in the appropriate clinical context and while considering other imaging features. Distances between certain anatomical reference points are also important to consider for minimizing risks during orbital surgery. In addition, examples of conditions associated with abnormal anatomical dimensions are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further Reading

  • Ankur G, Xin Z. Lacrimal gland development: from signaling interactions to regenerative medicine. Dev Dyn. 2017;246(12):970–80.

    Article  Google Scholar 

  • Bingham CM, Castro A, Realini T, Nguyen J, Hogg JP, Sivak-Callcott JA. Calculated CT volumes of lacrimal glands in normal Caucasian orbits. Ophthalmic Plast Reconstr Surg. 2013;29(3):157–9.

    Article  PubMed  Google Scholar 

  • Bourlet P, Carrie D, Garcier JM, Dalens H, Chansolme D, Viallet JF, Boyer L. Study of the inferior oblique muscle of the eye by MRI. Surg Radiol Anat. 1998;20(2):119–21.

    Article  CAS  PubMed  Google Scholar 

  • Bukhari AA, Basheer NA, Joharjy HI. Age, gender, and interracial variability of normal lacrimal gland volume using MRI. Ophthalmic Plast Reconstr Surg. 2014;30(5):388–91.

    Article  PubMed  Google Scholar 

  • Carlow TJ, Depper MH, Orrison WW Jr. MR of extraocular muscles in chronic progressive external ophthalmoplegia. AJNR Am J Neuroradiol. 1998;19(1):95–9.

    CAS  PubMed  Google Scholar 

  • Clark RA, Demer JL. Changes in extraocular muscle volume during ocular duction. Invest Ophthalmol Vis Sci. 2016;57(3):1106–11.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Battista JC, Zimmer LA, Theodosopoulos PV, Froelich SC, Keller JT. Anatomy of the inferior orbital fissure: implications for endoscopic cranial base surgery. J Neurol Surg B Skull Base. 2012;73(2):132–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Elhadi AM, Zaidi HA, Yagmurlu K, Ahmed S, Rhoton AL Jr, Nakaji P, Preul MC, Little AS. Infraorbital nerve: a surgically relevant landmark for the pterygopalatine fossa, cavernous sinus, and anterolateral skull base in endoscopic transmaxillary approaches. J Neurosurg. 2016;125(6):1460–8.

    Article  PubMed  Google Scholar 

  • Erdogan B, Alper Y, Bahar Y, Hasmet Y, Gulen D. Evaluation of lacrimal gland dimensions and volume in Turkish population with computed tomography. J Clin Diagn Res. 2016;10(2):TC06–8.

    Google Scholar 

  • Hallinan JT, Pillay P, Koh LH, Goh KY, Yu WY. Eye globe abnormalities on MR and CT in adults: an anatomical approach. Korean J Radiol. 2016;17(5):664–73.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemi H, Khabazkhoob M, Miraftab M, Emamian MH, Shariati M, Abdolahinia T, Fotouhi A. The distribution of axial length, anterior chamber depth, lens thickness, and vitreous chamber depth in an adult population of Shahroud, Iran. BMC Ophthalmol. 2012;12:50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemi H, Jafarzadehpur E, Ghaderi S, Yekta A, Ostadimoghaddam H, Norouzirad R, Khabazkhoob M. Ocular components during the ages of ocular development. Acta Ophthalmol. 2015;93(1):e74–81.

    Article  PubMed  Google Scholar 

  • Huanmanop T, Agthong S, Chentanez V. Surgical anatomy of fissures and foramina in the orbits of Thai adults. J Med Assoc Thail. 2007;90(11):2383–91.

    Google Scholar 

  • Hyoun-Do H, Ji-Hye K, Seong-Jae K, Ji-Myong Y, Seong-Wook S. The change of lacrimal gland volume in Korean patients with thyroid-associated ophthalmopathy. Korean J Ophthalmol. 2016;30(5):319–25.

    Article  Google Scholar 

  • Izumi M, Eguchi K, Uetani M, Nakamura H, Takagi Y, Hayashi K, et al. MR features of the lacrimal gland in Sjögren’s syndrome. Am J Roentgenol. 1998;170:1661–6.

    Article  CAS  Google Scholar 

  • KarakaÅŸ P, Bozkir MG, Oguz O. Morphometric measurements from various reference points in the orbit of male Caucasians. Surg Radiol Anat. 2003;24(6):358–62.

    Article  PubMed  Google Scholar 

  • Karim S, Clark RA, Poukens V, Demer JL. Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Invest Ophthalmol Vis Sci. 2004;45(4):1047–51.

    Article  PubMed  Google Scholar 

  • Kashiwagi K, Okubo T, Tsukahara S. Association of magnetic resonance imaging of anterior optic pathway with glaucomatous visual field damage and optic disc cupping. J Glaucoma. 2004;13(3):189–95.

    Article  PubMed  Google Scholar 

  • Laestadius ND, Aase JM, Smith DW. Normal inner canthal and outer orbital dimensions. J Pediatr. 1969;74(3):465–8.

    Article  CAS  PubMed  Google Scholar 

  • Lee JS, Lim DW, Lee SH, Oum BS, Kim HJ, Lee HJ. Normative measurements of Korean orbital structures revealed by computerized tomography. Acta Ophthalmol Scand. 2001;79(2):197–200.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lee Y, Ha S, Park M, Baek S. Measurement of width and distance of the posterior border of the deep lateral orbital wall using computed tomography. J Craniomaxillofac Surg. 2011;39(8):606–9.

    Article  PubMed  Google Scholar 

  • Lee JS, Lee H, Kim JW, Chang M, Park M, Baek S. Computed tomographic dimensions of the lacrimal gland in healthy orbits. J Craniofac Surg. 2013;24(3):712–5.

    Article  PubMed  Google Scholar 

  • Lefebvre DR, Yoon MK. CT-based measurements of the sphenoid trigone in different sex and race. Ophthalmic Plast Reconstr Surg. 2015;31(2):155–8.

    Article  PubMed  Google Scholar 

  • Lenhart PD, Desai NK, Bruce BB, Hutchinson AK, Lambert SR. The role of magnetic resonance imaging in diagnosing optic nerve hypoplasia. Am J Ophthalmol. 2014;158(6):1164–1171.e2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lerdlum S, Boonsirikamchai P, Setsakol E. Normal measurements of extraocular muscle using computed tomography. J Med Assoc Thail. 2007;90(2):307–12.

    Google Scholar 

  • Lirng JF, Fuh JL, Wu ZA, Lu SR, Wang SJ. Diameter of the superior ophthalmic vein in relation to intracranial pressure. AJNR Am J Neuroradiol. 2003;24(4):700–3.

    PubMed  Google Scholar 

  • Mafee MF, Pruzansky S, Corrales MM, Phatak MG, Valvassori GE, Dobben GD, Capek V. CT in the evaluation of the orbit and the bony interorbital distance. AJNR Am J Neuroradiol. 1986;7(2):265–9.

    CAS  PubMed  Google Scholar 

  • Maresky HS, Ben Ely A, Bartischovsky T, Coret-Simon J, Morad Y, Rozowsky S, Klar M, Negieva S, Bekerman I, Tal S. MRI measurements of the normal pediatric optic nerve pathway. J Clin Neurosci. 2018;48:209–13.

    Article  PubMed  Google Scholar 

  • Nam Y, Bahk S, Eo S. Anatomical study of the infraorbital nerve and surrounding structures for the surgery of orbital floor fractures. J Craniofac Surg. 2017;28(4):1099–104.

    Article  PubMed  Google Scholar 

  • Nguyen DC, Farber SJ, Um GT, Skolnick GB, Woo AS, Patel KB. Anatomical study of the intraosseous pathway of the infraorbital nerve. J Craniofac Surg. 2016;27(4):1094–7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nugent RA, Belkin RI, Neigel JM, Rootman J, Robertson WD, Spinelli J, Graeb DA. Graves orbitopathy: correlation of CT and clinical findings. Radiology. 1990;177(3):675–82.

    Article  CAS  PubMed  Google Scholar 

  • Ozgen A, Ariyurek M. Normative measurements of orbital structures using CT. AJR Am J Roentgenol. 1998;170(4):1093–6.

    Article  CAS  PubMed  Google Scholar 

  • Ozgen A, Aydingöz U. Normative measurements of orbital structures using MRI. J Comput Assist Tomogr. 2000;24(3):493–6.

    Article  CAS  PubMed  Google Scholar 

  • Pool GM, Didier RA, Bardo D, Selden NR, Kuang AA. Computed tomography-generated anthropometric measurements of orbital relationships in normal infants and children. J Neurosurg Pediatr. 2016;18(2):201–6.

    Article  PubMed  Google Scholar 

  • Saccà S, Polizzi A, Macrì A, Patrone G, Rolando M. Echographic study of extraocular muscle thickness in children and adults. Eye (Lond). 2000;14(5):765–9.

    Article  Google Scholar 

  • Shofty B, Ben-Sira L, Constantini S, Freedman S, Kesler A. Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol. 2012;33(2):366–9.

    Article  CAS  PubMed  Google Scholar 

  • Suh JD, Kuan EC, Thompson CF, Scawn RL, Feinstein AJ, Barham HP, Kingdom TT, Ramakrishnan VR. Using fixed anatomical landmarks to avoid medial rectus injury: a radiographic analysis in patients with and without Graves’ disease. Am J Otolaryngol. 2016;37(4):334–8.

    Article  PubMed  Google Scholar 

  • Swan KC, Wilkins JH. Extraocular muscle surgery in early infancy—anatomical factors. J Pediatr Ophthalmol Strabismus. 1984;21(2):44–9.

    Article  CAS  PubMed  Google Scholar 

  • Tanitame K, Sone T, Miyoshi T, Tanitame N, Otani K, Akiyama Y, Takasu M, Date S, Kiuchi Y, Awai K. Ocular volumetry using fast high-resolution MRI during visual fixation. AJNR Am J Neuroradiol. 2013;34(4):870–6.

    Article  CAS  PubMed  Google Scholar 

  • Tian S, Nishida Y, Isberg B, Lennerstrand G. MRI measurements of normal extraocular muscles and other orbital structures. Graefes Arch Clin Exp Ophthalmol. 2000;238(5):393–404.

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi S, Nakamura M, Tabuchi T, Yasumoto Y. The superior ophthalmic vein: delineation with high-resolution magnetic resonance imaging. Surg Radiol Anat. 2015;37(1):75–80.

    Article  PubMed  Google Scholar 

  • Turvey TA, Golden BA. Orbital anatomy for the surgeon. Oral Maxillofac Surg Clin North Am. 2012;24(4):525–36.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaiman M, Abuita R, Bekerman I. Optic nerve sheath diameters in healthy adults measured by computer tomography. Int J Ophthalmol. 2015;8(6):1240–4.

    PubMed  PubMed Central  Google Scholar 

  • Watcharakorn A, Ngamsirisuk S. Normal measurements of size of optic nerve sheath complex using computed tomography. J Med Assoc Thail. 2014;97(Suppl 8):S22–6.

    Google Scholar 

  • Weissman JL, Beatty RL, Hirsch WL, Curtin HD. Enlarged anterior chamber: CT finding of a ruptured globe. AJNR Am J Neuroradiol. 1995;16(4 Suppl):936–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Thomas Ginat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Macey, M.B., Small, J.E., Ginat, D.T. (2021). Normative Measurements of Orbital Walls and Contents. In: Ginat, D. (eds) Manual of Normative Measurements in Head and Neck Imaging. Springer, Cham. https://doi.org/10.1007/978-3-030-50567-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50567-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50566-0

  • Online ISBN: 978-3-030-50567-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics