A Multi-device Evaluation Approach of Passenger Information Systems in Smart Public Transport

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12213)


Adaptive passenger information for an enhanced mobility experience may be the next step towards a smart public transport. In our research project, we have developed a multi-device evaluation approach for adaptive passenger information systems of mobile public displays. An adaptive passenger information system needs to be aware of the passenger’s context. In order to fulfill this requirement, we use the passenger’s personal devices like smartphones or smart watches as context sources. In this paper, we describe our approach of a multi-device passenger information system evaluation focusing on privacy aspects. We present three different methods of pseudonyms that were used to visually link the personal information on passenger’s private devices with the displayed information on the public display. In addition, we report on our evaluation results from a user study evaluating the acceptance and the intelligibility of the used visual pseudonyms.


Smart public transport Passenger information Data privacy 



This work was conducted within the scope of the research project “SmartMMI - model- and context-based mobility information on smart public displays and mobile devices in public transport” and was funded by the German Federal Ministry of Transport and Digital Infrastructure as part of the mFund initiative (Funding ID: 19F2042A). We would like to thank Johannes Bauer and Sarah Eckert for their excellent contribution to this project.


  1. 1.
    Sahibzada, H., Hornecker, E., Echtler, F., Fischer, P.T.: Designing interactive advertisements for public displays. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, New York, NY, USA (2017)Google Scholar
  2. 2.
    Storz, O., Friday, A., Davies, N., Finney, J., Sas, C., Sheridan, J.: Public ubiquitous computing systems: lessons from the e-campus display deployments. IEEE Pervasive Comput. 5, 40–47 (2006)CrossRefGoogle Scholar
  3. 3.
    Parker, C., Kay, J., Tomitsch, M.: Device-free: an implicit personalisation approach for public interactive displays. In: Proceedings of the Australasian Computer Science Week Multiconference, p. 8. ACM, January 2018Google Scholar
  4. 4.
    Kühn, R., Lemme, D., Schlegel, T.: An interaction concept for public displays and mobile devices in public transport. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8007, pp. 698–705. Springer, Heidelberg (2013). Scholar
  5. 5.
    Hörold, S., Mayas, C., Krömker, H.: Interactive displays in public transport – challenges and expectations. Proc. Manuf. 3, 2808–2815 (2015)Google Scholar
  6. 6.
    Alt, F., Schneegaß, S., Schmidt, A., Müller, J., Memarovic, N.: How to evaluate public displays. In: Proceedings of the 2012 International Symposium on Pervasive Displays, New York, NY, USA, (2012)Google Scholar
  7. 7.
    Brignull, H., Rogers, Y.: Enticing people to interact with large public displays in public spaces. In: Human-Computer Interaction INTERACT 2003: IFIP TC13 International Conference on Human-Computer Interaction, Zurich, 1st–5th September 2003 (2003)Google Scholar
  8. 8.
    Hörold, S., Kühn, R., Mayas, C., Schlegel, T.: Interaktionspräferenzen für Personas im öffentlichen Personenverkehr. In: Mensch & Computer 2011: überMEDIEN| üBERmorgen, Chemnitz (2011)Google Scholar
  9. 9.
    Oliveira, L., Bradley, C., Birrell, S., Tinworth, N., Davies, A., Cain, R.: Using passenger personas to design technological innovation for the rail industry. In: Kováčiková, T., Buzna, Ľ., Pourhashem, G., Lugano, G., Cornet, Y., Lugano, N. (eds.) INTSYS 2017. LNICST, vol. 222, pp. 67–75. Springer, Cham (2018). Scholar
  10. 10.
    Oliveira, L., Bradley, C., Birrell, S., Davies, A., Tinworth, N., Cain, R.: Understanding passengers’ experiences of train journeys to inform the design of technological innovations. In: Re: Research - the 2017 International Association of Societies of Design Research (IASDR) Conference, Cincinnati (2017)Google Scholar
  11. 11.
    Ardito, C., Buono, P., Costabile, M.F., Desolda, G.: Interaction with large displays: a survey. ACM Comput. Surv. 47(3), 46:1–46:38 (2015)CrossRefGoogle Scholar
  12. 12.
    Research Project SmartMMI: Model- and Context-based Mobility Information on Smart Public Displays and Mobile Devices in Public Transport. Accessed 16 Dec 2019
  13. 13.
    TransitSreen. Accessed 15 Dec 2019
  14. 14.
    Fischer, K.P.: Digital Signage: Werbliche Kommunikation am Point of Sale auf Flachbildschirmen. Theoretische Hintergründe, Aufgaben und Wirkungsmessungen. München, LMU München: Fakultät für Psychologie und Pädagogik, Diss., Januar 2011Google Scholar
  15. 15.
    MTA. Advertise with us - On The Go Travel Stations. Accessed 23 Dec 2019
  16. 16.
    Volkszählungsurteil (the census decision to German’s Federal Constitutional Court), BVerfGE 65, 1, 41f.; Leeb/Liebhaber, JuS 2018, 534Google Scholar
  17. 17.
  18. 18.
    Kühling, J., Seidel, C., Sivridis, A.: Datenschutzrecht (Start ins Rechtsgebiet), Recital 22Google Scholar
  19. 19.
    Leeb, C.M., Liebhaber, J.: Grundlagen des Datenschutzrechts. Jus: Juristische Schulung, (6), 534–537 (2018)Google Scholar
  20. 20.
    European Commission proposes negotiating directives for the Union’s accession to the European Convention on Human Rights (ECHR) – FAQ. Accessed 3 Jan 2020
  21. 21.
    Kühling, J., Seidel, C., Sivridis, A.: Datenschutzrecht (Start ins Rechtsgebiet), Recital 41Google Scholar
  22. 22.
    Recital 3 and 9 of the GDPRGoogle Scholar
  23. 23.
    Recital 5 and 10 of the GDPRGoogle Scholar
  24. 24.
  25. 25.
    European Regulation on electronic identification and trust services for electronic transactions in the internal market.
  26. 26.
    European Regulation as regards the procedures and authorities involved for the authorization of CCPs and requirements for the recognition of third country CCPs.
  27. 27.
    Database of European Union Law/Regulations.
  28. 28.
    Barlag in Europäische Datenschutz-Grundverordnung, Vorrang des Unionrechts – Anwendbarkeit des nationalen Rechts, § 3 Recital 8Google Scholar
  29. 29.
    Paal/Pauly, Datenschutz-Grundverordnung, DS-GVO Art. 4 Recital 14Google Scholar
  30. 30.
    Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings 1996 IEEE Symposium on Visual Languages, pp. 336–343. IEEE, September 1996Google Scholar
  31. 31.
    Keller, C., Titov, W., Sawilla, S., Schlegel, T.: An evaluation approach for a smart public display in public transport. In: Mensch und Computer 2019 – Workshopband, Hamburg, Germany, 8–11 September 2019. Gesellschaft für Informatik e.V., S. 92-101 (2019)Google Scholar
  32. 32.
    Keller, C., Struwe, S., Titov, W., Schlegel, T.: Understanding the usefulness and acceptance of adaptivity in smart public transport. In: Krömker, H. (ed.) HCII 2019. LNCS, vol. 11596, pp. 307–326. Springer, Cham (2019). Scholar
  33. 33.
    Frommann, U.: Die Methode Lautes Denken (2005). Accessed 29 Dec 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Ubiquitous Mobility SystemsKarlsruhe University of Applied SciencesKarlsruheGermany
  2. 2.FZI - Forschungszentrum InformatikKarlsruheGermany

Personalised recommendations