Advertisement

A Passenger Context Model for Adaptive Passenger Information in Public Transport

Conference paper
  • 678 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12213)

Abstract

Passengers in public transport expect passenger information to be exact, timely and appropriate to their situation. Therefore, future passenger information systems should adapt to the passenger’s context as precisely as possible. In this paper, we present a context model and describe our architecture for an adaptive, multi-device passenger information system. We will also present adaptation scenarios that show the application of our context model.

Keywords

Context model Adaptation Public transport 

Notes

Acknowledgements

This work was conducted within the scope of the research project “SmartMMI - model- and context-based mobility information on smart public displays and mobile devices in public transport” and was funded by the German Federal Ministry of Transport and Digital Infrastructure as part of the mFund initiative (Funding ID: 19F2042A).

References

  1. 1.
    de Amorim, D.M., Dias, T.G., Ferreira, M.C.: Usability evaluation of a public transport mobile ticketing solution. In: Ahram, T., Karwowski, W., Taiar, R. (eds.) IHSED 2018. AISC, vol. 876, pp. 345–351. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-02053-8_53CrossRefGoogle Scholar
  2. 2.
    Beutel, M.C., et al.: Heterogeneous travel information exchange. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 170, pp. 181–187. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-47075-7_23CrossRefGoogle Scholar
  3. 3.
    Boudaa, B., Hammoudi, S., Benslimane, S.M.: Towards an extensible context model for mobile user in smart cities. In: Amine, A., Mouhoub, M., Ait Mohamed, O., Djebbar, B. (eds.) CIIA 2018. IAICT, vol. 522, pp. 498–508. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-89743-1_43CrossRefGoogle Scholar
  4. 4.
    Camacho, T.D., Foth, M., Rakotonirainy, A.: Pervasive technology and public transport: opportunities beyond telematics. IEEE Pervasive Comput. 12(1), 18–25 (2013).  https://doi.org/10.1109/MPRV.2012.61CrossRefGoogle Scholar
  5. 5.
    Cheverst, K., Davies, N., Mitchell, K., Friday, A.: Experiences of developing and deploying a context-aware tourist guide: the guide project. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking (MobiCom 2000), pp. 20–31. ACM, New York (2000).  https://doi.org/10.1145/345910.345916. http://doi.acm.org/10.1145/345910.345916
  6. 6.
    Chow, V.T.F., et al.: Utilizing real-time travel information, mobile applications and wearable devices for smart public transportation. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD), pp. 138–144, November 2016.  https://doi.org/10.1109/CCBD.2016.036
  7. 7.
    Chowdhury, S., Giacaman, N.: En-route planning of multi-destination public-transport trips using smartphones. J. Public Transp. 18(4), 31–45 (2015)CrossRefGoogle Scholar
  8. 8.
    Davidsson, P., Hajinasab, B., Holmgren, J., Jevinger, Å., Persson, J.A.: The fourth wave of digitalization and public transport: opportunities and challenges. Sustainability 8(12) (2016).  https://doi.org/10.3390/su8121248. http://www.mdpi.com/2071-1050/8/12/1248
  9. 9.
    Dey, A.K., Abowd, G.D.: Towards a better understanding of context and context-awareness. Technical report (1999)Google Scholar
  10. 10.
    Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum.-Comput. Interact. 16(2–4), 97–166 (2001).  https://doi.org/10.1207/S15327051HCI16234_02. http://www.tandfonline.com/doi/abs/10.1207/S15327051HCI16234 02CrossRefGoogle Scholar
  11. 11.
    Handte, M., Foell, S., Wagner, S., Kortuem, G., Marrón, P.J.: An internet-of-things enabled connected navigation system for urban bus riders. IEEE Internet Things J. 3(5), 735–744 (2016).  https://doi.org/10.1109/JIOT.2016.2554146CrossRefGoogle Scholar
  12. 12.
    Hörold, S., Mayas, C., Krömker, H.: Analyzing varying environmental contexts in public transport. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol. 8004, pp. 85–94. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-39232-0_10CrossRefGoogle Scholar
  13. 13.
    Keller, C., Brunk, S., Schlegel, T.: Introducing the public transport domain to the web of data. In: Benatallah, B., Bestavros, A., Manolopoulos, Y., Vakali, A., Zhang, Y. (eds.) WISE 2014. LNCS, vol. 8787, pp. 521–530. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-11746-1_38CrossRefGoogle Scholar
  14. 14.
    Keller, C., Pöhland, R., Brunk, S., Schlegel, T.: An adaptive semantic mobile application for individual touristic exploration. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8512, pp. 434–443. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07227-2_41CrossRefGoogle Scholar
  15. 15.
    Keller, C., Schlegel, T.: How to get in touch with the passenger: context-aware choices of output modality in smart public transport. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and the 2019 International Symposium on Wearable Computers, UbiComp/ISWC 2019 Adjunct. ACM, New York (2019, to appear).  https://doi.org/10.1145/3341162.3349321. http://doi.acm.org/10.1145/3341162.3349321
  16. 16.
    Keller, C., Titov, W., Sawilla, S., Schlegel, T.: Evaluation of a smart public display in public transport. In: Mensch und Computer 2019 - Workshopband. Gesellschaft für Informatik e.V., Bonn (2019)Google Scholar
  17. 17.
    Mayas, C., Steinert, T., Krömker, H.: Interactive public displays for paperless mobility stations. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10902, pp. 542–551. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91244-8_42CrossRefGoogle Scholar
  18. 18.
    Oliveira, L., Bradley, C., Birrell, S., Davies, A., Tinworth, N., Cain, R.: Understanding passengers’ experiences of train journeys to inform the design of technological innovations. In: Re: Research - the 2017 International Association of Societies of Design Research (IASDR) Conference, Cincinnati, Ohio, USA, pp. 838–853 (2017)Google Scholar
  19. 19.
    Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2014).  https://doi.org/10.1109/SURV.2013.042313.00197CrossRefGoogle Scholar
  20. 20.
    Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Workshop on Mobile Computing Systems and Applications, pp. 85–90, December 1994.  https://doi.org/10.1109/MCSA.1994.512740
  21. 21.
    Schlegel, T., Keller, C.: Model-based ubiquitous interaction concepts and contexts in public systems. In: Proceedings of the 14th International Conference on Human-Computer Interaction (2011)Google Scholar
  22. 22.
    Schmidt, A., Beigl, M., Gellersen, H.W.: There is more to context than location. Comput. Graph. 23(6), 893–901 (1999).  https://doi.org/10.1016/S0097-8493(99)00120-X. http://www.sciencedirect.com/science/article/pii/S009784939900120X
  23. 23.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. 10(1), 91–102 (1992).  https://doi.org/10.1145/128756.128759. http://portal.acm.org/citation.cfm?doid=128756.128759
  24. 24.
    Weiser, M.: The computer for the 21st century. Sci. Am. 265, 94–104 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Ubiquitous Mobility SystemsKarlsruhe University of Applied SciencesKarlsruheGermany

Personalised recommendations