Advertisement

Toolbox for Analysis and Evaluation of Low-Emission Urban Mobility

Conference paper
  • 703 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12213)

Abstract

The evaluation of people’s mobility is crucial for understanding traffic, traffic security and the effects of traffic planning. In this paper, we present our toolbox for analyzing and evaluating aspects of different mobility modes. Some of these tools support the participation of road users in the analysis. The tools either can be applied to implement analyses for planning purposes or for the evaluation of implemented measures. Our goal is to improve the understanding of mobility in all its facets and ultimately to increase user comfort, safety and the overall user acceptance in urban mobility.

Keywords

Urban mobility Transportation planning Eye tracking 

References

  1. 1.
    Schelewsky, M., Bock, B., Jonuschat, H., Stephan, K.: Das elektronische Wegetagebuch: Chancen und Herausforderungen einer automatisierten Wegeerfassung inter-modaler Wege (2014). https://www.researchgate.net/publication/259897501_Das_elektronische_Wegetagebuch_Chancen_und_Herausforderungen_einer_automatisierten_Wegeerfassung_intermodaler_Wege
  2. 2.
    Safi, H., Assemi, B., Mesbah, M., Ferreira, L., Hickman, M.: Design and implementation of a smartphone-based travel survey. Transp. Res. Rec. 2526(1), 99–107 (2015)CrossRefGoogle Scholar
  3. 3.
    Patterson, Z., Fitzsimmons, K., Jackson, S., Mukai, T.: Itinerum: the open smartphone travel survey platform. SoftwareX 10, 100230 (2019)CrossRefGoogle Scholar
  4. 4.
    BMVI: Article regarding the inquiry of mobility data by the German ministry of traffic and infrastructure (2019). https://www.bmvi.de/SharedDocs/DE/Artikel/G/deutsches-mobilitaetspanel.html
  5. 5.
    Kunze, U.: Evaluation einer Focus+Context Visualisierungstechnik mit Eye-Tracking. Institut für Visualisierung und Interaktive Systeme, Stuttgart (2018)Google Scholar
  6. 6.
    McEvoy, S., Stevenson, S., Woodward, M.: The impact of driver distraction on road safety: results from a representative survey in two Australian states. Inj. Prev. 12(4), 242–247 (2006)CrossRefGoogle Scholar
  7. 7.
    Kapitaniak, B., Walczak, M., Kosobudzki, M., Jozwiak, Z., Bortkiewicz, A.: Application of eye-tracking in the testing of drivers: a review of research. Int. J. Occup. Med. Environ. Health 28(6), 941–954 (2015)CrossRefGoogle Scholar
  8. 8.
    Davoudian, N., Raynham, P.: What do pedestrians look at night? Light. Res. Technol. 44(4), 438–448 (2012)CrossRefGoogle Scholar
  9. 9.
    Kiefer, P., Straub, F., Raubal, M.: Towards location-aware mobile eye tracking. In: Proceedings of the Symposium of Eye Tracking Research & Applications, pp. 313–316. ACM (2012)Google Scholar
  10. 10.
    Mantuano, A., Bernardi, S., Rupi, F.: Cyclist gaze behavior in urban space: an eye-tracking experiment on the bicycle network of Bologna. Case Stud. Transp. Policy 5(2), 408–416 (2016)CrossRefGoogle Scholar
  11. 11.
    Vansteenkiste, P., Cardon, G., Philippaerts, R., Lenoir, M.: The implications of low quality bicycle paths on gaze behavior of cyclists: a field test. Transp. Res. Part F: Traffic Psychol. Behav. 23, 81–87 (2014)CrossRefGoogle Scholar
  12. 12.
    Wenczel, F., Hepperle, L., von Stülpennagel, R.: Gaze behavior during incidental and intentional navigation in an outdoor environment. Spat. Cogn. Comput. 17(1–2), 121–142 (2017)CrossRefGoogle Scholar
  13. 13.
    Bundesamt, S.: Unfallentwicklung auf deutschen Straßen, Wiesbaden (2018)Google Scholar
  14. 14.
    Keller, C., Titov, W., Sawilla, S., Schlegel, T.: Evaluation of a smart public display in public transport. In: Mensch und Computer 2019-Workshopband (2019)Google Scholar
  15. 15.
    ITF: Pedestrian Safety, Urban Space and Health. OECD Publishing, Paris (2012)Google Scholar
  16. 16.
    Titov, W., Schlegel, T.: Monitoring road surface conditions for bicycles – using mobile device sensor data from crowd sourcing. In: Krömker, H. (ed.) HCII 2019. LNCS, vol. 11596, pp. 340–356. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-22666-4_25CrossRefGoogle Scholar
  17. 17.
    Akar, G., Clifton, K.J.: The influence if individual perceptions and bicycle infrastructure on the decision to bike. In: 88th Annual Meeting of the Transportation Research Board, Washington, DC (2009)Google Scholar
  18. 18.
    Bosselmann, P., et al.: Sun, Wind, and Comfort A Study of Open Spaces and Sidewalks in Four Downtown Areas. University of California, Institute if Urban and Regional Development, Berkeley (1984)Google Scholar
  19. 19.
    Thomas, T., Jaarsma, R., Tutert, B.: Temporal variations of bicycle demand in the Netherlands: the influence of weather on cycling. Transp. Res. Board (2008)Google Scholar
  20. 20.
    Miah, S., Kaparias, I., Liatsis, P.: Evaluation of MEMS sensors accuracy for bicycle tracking and positioning. IEEE, London (2015)Google Scholar
  21. 21.
    Suhr, W., Schlichting, H.-J.: Mit Pedalkraft gegen Berge und Wind. In: Physik unserer Zeit, Weinheim, pp. 294–298. Wiley-VCH Verlag (2007)Google Scholar
  22. 22.
    Xiaofeng, L., Bin, L., Aimin, J., Shixin, Q., Chaosheng, X., Ning, X.: A bicycle-borne sensor for monitoring air pollution near roadways. IEEE, Changzhou (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Ubiquitous Mobility SystemsKarlsruhe University of Applied SciencesKarlsruheGermany

Personalised recommendations