Skip to main content

SMAT: Smart Multiple Affinity Metrics for Multiple Object Tracking

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12132))

Included in the following conference series:

Abstract

This research introduces a novel multiple object tracking algorithm called SMAT (Smart Multiple Affinity Metric Tracking) that works as an online tracking-by-detection approach. The use of various characteristics from observation is established as a critical factor for improving tracking performance. By using the position, motion, appearance, and a correction component, our approach achieves an accuracy comparable to state of the art trackers. We use the optical flow to track the motion of the objects, we show that tracking accuracy can be improved by using a neural network to select key points to be tracked by the optical flow. The proposed algorithm is evaluated by using the KITTI Tracking Benchmark for the class CAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berclaz, J., Fleuret, F., Turetken, E., Fua, P.: Multiple object tracking using k-shortest paths optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(9), 1806–1819 (2011). https://doi.org/10.1109/TPAMI.2011.21

    Article  Google Scholar 

  2. Bernardin, K., Stiefelhagen, R.: Evaluating multiple object tracking performance: the clear mot metrics. J. Image Video Process. 2008, 1 (2008)

    Article  Google Scholar 

  3. Bewley, A., Ge, Z., Ott, L., Ramos, F., Upcroft, B.: Simple online and realtime tracking. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3464–3468. IEEE (2016)

    Google Scholar 

  4. Bochinski, E., Eiselein, V., Sikora, T.: High-speed tracking-by-detection without using image information. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2017)

    Google Scholar 

  5. Choi, W.: Near-online multi-target tracking with aggregated local flow descriptor. In: 2015 IEEE International Conference on Computer Vision (ICCV), December 2015. https://doi.org/10.1109/iccv.2015.347, http://dx.doi.org/10.1109/iccv.2015.347

  6. Dai, J., Li, Y., He, K., Sun, J.: R-FCN: Object detection via region-based fully convolutional networks. In: Advances in Neural Information Processing Systems, pp. 379–387 (2016)

    Google Scholar 

  7. Dendorfer, P., et al.: CVPR19 tracking and detection challenge: how crowded can it get? arXiv:1906.04567 [cs], June 2019, arXiv: 1906.04567

  8. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  9. Gündüz, G., Acarman, T.: A lightweight online multiple object vehicle tracking method. In: 2018 IEEE Intelligent Vehicles Symposium (IV). pp. 427–432, June 2018. https://doi.org/10.1109/IVS.2018.8500386

  10. Huang, J., et al.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)

    Google Scholar 

  11. Kanade, L.: An iterative image registration technique with an application to stereo vision

    Google Scholar 

  12. Karunasekera, H., Wang, H., Zhang, H.: Multiple object tracking with attention to appearance, structure, motion and size. IEEE Access 7, 104423–104434 (2019). https://doi.org/10.1109/ACCESS.2019.2932301

    Article  Google Scholar 

  13. Kim, C., Li, F., Ciptadi, A., Rehg, J.M.: Multiple hypothesis tracking revisited. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4696–4704, December 2015. https://doi.org/10.1109/ICCV.2015.533

  14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logistics Quarterly 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  15. Lee, B., Erdenee, E., Jin, S., Nam, M.Y., Jung, Y.G., Rhee, P.K.: Multi-class multi-object tracking using changing point detection. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 68–83. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_6

    Chapter  Google Scholar 

  16. Li, W., Zhao, R., Xiao, T., Wang, X.: Deepreid: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 152–159 (2014)

    Google Scholar 

  17. Li, Y., Huang, C., Nevatia, R.: Learning to associate: hybridboosted multi-target tracker for crowded scene. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2953–2960, June 2009. https://doi.org/10.1109/CVPR.2009.5206735

  18. Zhang, L., Li, Y., Nevatia, R.: Global data association for multi-object tracking using network flows. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008. https://doi.org/10.1109/CVPR.2008.4587584

  19. Liu, X., Liu, W., Ma, H., Fu, H.: Large-scale vehicle re-identification in urban surveillance videos. In: 2016 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, July 2016

    Google Scholar 

  20. Lyu, S., et al.: UA-DETRAC 2017: Report of AVSS2017 & IWT4S challenge on advanced traffic monitoring. In: 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–7. IEEE (2017)

    Google Scholar 

  21. Milan, A., Roth, S., Schindler, K.: Continuous energy minimization for multitarget tracking. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 58–72 (2014). https://doi.org/10.1109/TPAMI.2013.103

    Article  Google Scholar 

  22. Murthy, J.K., Sharma, S., Krishna, K.M.: Shape priors for real-time monocular object localization in dynamic environments. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1768–1774. IEEE (2017)

    Google Scholar 

  23. Ren, J., et al.: Accurate single stage detector using recurrent rolling convolution. http://arxiv.org/abs/1704.05776

  24. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 36, 91–99 (2015)

    Google Scholar 

  25. Rosten, E., Porter, R., Drummond, T.: Faster and better: a machine learning approach to corner detection. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 105–119 (2008)

    Article  Google Scholar 

  26. Sharma, S., Ansari, J.A., Murthy, J.K., Krishna, K.M.: Beyond pixels: leveraging geometry and shape cues for online multi-object tracking. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 3508–3515. IEEE (2018)

    Google Scholar 

  27. Shi, J., et al.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600. IEEE (1994)

    Google Scholar 

  28. Tian, W., Lauer, M., Chen, L.: Online multi-object tracking using joint domain information in traffic scenarios. IEEE Trans. Intell. Transport. Syst. 39, 1–11 (2019)

    Google Scholar 

  29. Wang, G., Yuan, Y., Chen, X., Li, J., Zhou, X.: Learning discriminative features with multiple granularities for person re-identification. In: 2018 ACM Multimedia Conference on Multimedia Conference, pp. 274–282. ACM (2018)

    Google Scholar 

  30. Wojke, N., Bewley, A., Paulus, D.: Simple online and realtime tracking with a deep association metric. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 3645–3649. IEEE (2017)

    Google Scholar 

  31. Xiang, Y., Alahi, A., Savarese, S.: Learning to track: online multi-object tracking by decision making. In: The IEEE International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  32. Yang, F., Choi, W., Lin, Y.: Exploit all the layers: fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  33. Yu, F., Li, W., Li, Q., Liu, Y., Shi, X., Yan, J.: POI: multiple object tracking with high performance detection and appearance feature. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 36–42. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Franco Gonzalez , Andres Ospina or Philippe Calvez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gonzalez, N.F., Ospina, A., Calvez, P. (2020). SMAT: Smart Multiple Affinity Metrics for Multiple Object Tracking. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics