Advertisement

Optic Disc and Fovea Detection in Color Eye Fundus Images

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12132)

Abstract

The optic disc (OD) and the fovea are relevant landmarks in fundus images. Their localization and segmentation can facilitate the detection of some retinal lesions and the assessment of their importance to the severity and progression of several eye disorders. Distinct methodologies have been developed for detecting these structures, mainly based on color and vascular information. The methodology herein described combines the entropy of the vessel directions with the image intensities for finding the OD center and uses a sliding band filter for segmenting the OD. The fovea center corresponds to the darkest point inside a region defined from the OD position and radius. Both the Messidor and the IDRiD datasets are used for evaluating the performance of the developed methods. In the first one, a success rate of 99.56% and 100.00% are achieved for OD and fovea localization. Regarding the OD segmentation, the mean Jaccard index and Dice’s coefficient obtained are 0.87 and 0.94, respectively. The proposed methods are also amongst the top-3 performing solutions submitted to the IDRiD online challenge.

Keywords

Fundus image analysis Optic disc localization Optic disc segmentation Fovea localization Sliding band filter 

Notes

Acknowledgments

This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia within project.

CMUP-ERI/TIC/0028/2014.

Tânia Melo is funded by the FCT grant SFRH/BD/145329/2019. Teresa Araújo is funded by the FCT grant SFRH/BD/122365/2016.

References

  1. 1.
    Mendonça, A.M., Sousa, A., Mendonça, L., Campilho, A.: Automatic localization of the optic disc by combining vascular and intensity information. Comput. Med. Imaging Graph. 37(5–6), 409–417 (2013).  https://doi.org/10.1016/j.compmedimag.2013.04.004CrossRefGoogle Scholar
  2. 2.
    Jelinek, H., Cree, M.: Automated Image Detection of Retinal Pathology, 1st edn. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  3. 3.
    Aquino, A., Gegúndez-Arias, M., Marin, D.: Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int. J. Biol. Life Sci. 8(2), 87–92 (2012).  https://doi.org/10.5281/zenodo.1085129CrossRefGoogle Scholar
  4. 4.
    Youssif, A., Ghalwash, A., Ghoneim, A.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008).  https://doi.org/10.1109/TMI.2007.900326CrossRefGoogle Scholar
  5. 5.
    Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015).  https://doi.org/10.1016/j.compbiomed.2014.10.009CrossRefGoogle Scholar
  6. 6.
    Medhi, J., Dandapat, S.: An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Comput. Biol. Med. 74, 30–44 (2016).  https://doi.org/10.1016/j.compbiomed.2016.04.007CrossRefGoogle Scholar
  7. 7.
    Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006).  https://doi.org/10.1109/TMI.2006.879955CrossRefGoogle Scholar
  8. 8.
    Pereira, C.S., Mendonça, A.M., Campilho, A.: Evaluation of contrast enhancement filters for lung nodule detection. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 878–888. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74260-9_78CrossRefGoogle Scholar
  9. 9.
    Esteves, T., Quelhas, P., Mendonça, A.M., Campilho, A.: Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection. Mach. Vis. Appl. 23(4), 623–638 (2012).  https://doi.org/10.1007/s00138-012-0407-7CrossRefGoogle Scholar
  10. 10.
    Jonas, R., et al.: Optic disc - Fovea distance, axial length and parapapillary zones. The Beijing eye study 2011. PLoS ONE 10(9), 1–14 (2015).  https://doi.org/10.1371/journal.pone.0138701CrossRefGoogle Scholar
  11. 11.
    Rohrschneider, K.: Determination of the location of the fovea on the fundus. Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004).  https://doi.org/10.1167/iovs.03-1157CrossRefGoogle Scholar
  12. 12.
    Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014).  https://doi.org/10.5566/ias.1155CrossRefzbMATHGoogle Scholar
  13. 13.
    Porwal, P., et al.: IDRiD: diabetic retinopathy - segmentation and grading challenge. Med. Image Anal. 59, 101561 (2020).  https://doi.org/10.1016/j.media.2019.101561CrossRefGoogle Scholar
  14. 14.
    Araújo, T., Aresta, G., Galdran, A., Costa, P., Mendonça, A.M., Campilho, A.: UOLO - automatic object detection and segmentation in biomedical images. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 165–173. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00889-5_19CrossRefGoogle Scholar
  15. 15.
    Kamble, R., Kokare, M., Deshmukh, G., Hussin, F., Mériaudeau, F.: Localization of optic disc and fovea in retinal images using intensity based line scanning analysis. Comput. Biol. Med. 87, 382–396 (2017).  https://doi.org/10.1016/j.compbiomed.2017.04.016CrossRefGoogle Scholar
  16. 16.
    Aquino, A., Gegúndez-Arias, M., Marin, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010).  https://doi.org/10.1109/TMI.2010.2053042CrossRefGoogle Scholar
  17. 17.
    Al-Bander, B., Al-Nuaimy, W., Williams, B., Zheng, Y.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018).  https://doi.org/10.1016/j.bspc.2017.09.008CrossRefGoogle Scholar
  18. 18.
    Aquino, A.: Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 55, 61–73 (2014).  https://doi.org/10.1016/j.compbiomed.2014.10.007CrossRefGoogle Scholar
  19. 19.
    Gegundez-Arias, M., Marin, D., Bravo, J., Suero, A.: Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graph. 37(5–6), 386–393 (2013).  https://doi.org/10.1016/j.compmedimag.2013.06.002CrossRefGoogle Scholar
  20. 20.
    Dai, B., Wu, X., Bu, W.: Optic disc segmentation based on variational model with multiple energies. Pattern Recogn. 64, 226–235 (2017).  https://doi.org/10.1016/j.patcog.2016.11.017CrossRefGoogle Scholar
  21. 21.
    Roychowdhury, S., Koozekanani, D., Kuchinka, S., Parhi, K.: Optic disc boundary and vessel origin segmentation of fundus images. IEEE J. Biomed. Health Inf. 20(6), 1562–1574 (2016).  https://doi.org/10.1109/JBHI.2015.2473159CrossRefGoogle Scholar
  22. 22.
    Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013).  https://doi.org/10.1109/TMI.2013.2238244CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.INESC TEC - Institute for Systems and Computer EngineeringTechnology and SciencePortoPortugal
  2. 2.Faculty of Engineering of the University of PortoPortoPortugal

Personalised recommendations