Skip to main content

Abstract

This chapter motivates the study of Optimal Impulsive Control (OIC) applied to cancer therapy. The OIC problem is formulated and divided in three control sub-problems that are treated in detail in Chap. 5. The model structure used, that comprises pharmacokinetics, pharmacodynamics, and tumor dynamics, is described. Relevant background literature is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araujo RP, Mcelwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modeling. Bull Math Biol 66(5):1039-1091

    Google Scholar 

  • Arutyunov A, Karamzin D, Pereira FL (2019) Optimal impulsive control. Springer, Berlin

    Google Scholar 

  • Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JML, Hlatky L, Hahnfeldt P (2014) Classical mathematica models for description and prediction of experimental tumor growth. PLOS Comput Biol 10(8):e1003800

    Article  Google Scholar 

  • Bermudez A (2001) Some applications of optimal control theory of distributed systems. ESAIM 8:195–218

    Google Scholar 

  • Bressan A, Piccoli B (2007) Introduction to the mathematical theory of control. Am Inst Math Sci

    Google Scholar 

  • Buchanan LF, Norton FE (1971) Optimal control applications in economic systems. Elsevier, Adv Control Syst 8:41–187

    Google Scholar 

  • Cacace F, Cusimano V, Germani A, Palumbo P, Papa P (2018) Closed-loop control of tumor growth by means of anti-angiogenic administration. Math Biosci Eng 15(4):827–839

    Google Scholar 

  • Cacace F, Cusimano V, Palumbo P (2020) Optimal impulsive control with application to antiangiogenic tumor therapy. IEEE Trans Control Syst Technol 28(1):106–117

    Google Scholar 

  • Campbell JL, Jr, Clewell RA, Gentry PR, Andersen ME Clewell HJ, III (2012) Physiological based pharmacokinetic/toxicokinetic modelling. Meth Mol Biol 929:439–99

    Google Scholar 

  • d’Onofrio A, Ledzewicz U, Maurer H, Schättler H (2009) On optimal delivery of combination therapy for tumors. Math Biosci 222(1):13–26

    Google Scholar 

  • Drexler DA, Sápi J, Kovács L (2017) Optimal discrete time control of antiangiogenic tumor therapy. In: Proceedings of the 20th IFAC World Congress, pp 14046–14051

    Google Scholar 

  • Ducher M, Maire P, Goutellu S, Maurin M (2008) The Hill equation: a review of its capabilities in pharmacological modelling. Fund Clin Pharmacol 22(6):633–648

    Google Scholar 

  • Eladdadi A, Kim P, Mallet D (eds) (2014) Matematical models of tumor—immune system dynamics. Springer, Berlin

    Google Scholar 

  • Ergun A, Camphausen K, Wein LW (2003) Optimal scheduling of radiotherapy and angiogenic inhibitors. Bull Math Biol 65(3):407–424

    Google Scholar 

  • Kumar V, Abbas AK, Aster, JC (2012) Robbins basic pathology, 9th edn. Elsevier Saunders, Philadelphia

    Google Scholar 

  • Luca F, Salvatore S, Massimo L (2018) Evolution of cancer pharmacological treatments at the turn of the third millennium. Frontiers in Pharmacology, vol 9. ISSN: 1663-9812

    Google Scholar 

  • Martin R, Teo KL (1994) Optimal control of drug administration in cancer chemotherapy. World Scientific, Singapore

    Google Scholar 

  • Meibohm B, Derendorf H (1997) Basic Concepts of pharmacokinetic/pharmacodynamic modelling. Int J Clin Pharmacol Ther 35(40):401–13

    Google Scholar 

  • Meija GH, Alanis AY, Gonzalez MH, Findeisen R, Vargas EAH (2020) Passivity-based inverse optimal impulsive control for influenza treatment in the host. IEEE Trans Control Syst Technol 28(1):94–105

    Google Scholar 

  • Miller BM, Rubinovich EYa (2003) Impulsive control in continuous systems. Springer Science+Business Media, LLC, Berlin

    Google Scholar 

  • Nathan DG (2007) The cancer treatment revolution. Trans Am Clin Climatol Assoc 118:317–323

    Google Scholar 

  • Paalzow LK (1995) Torsten Teorell, the father of pharmacokinetics. Upsala J Med Sci 100:41–46

    Google Scholar 

  • Pierce JG, Schumitzky A (1976) Optimal impulsive control of compartment models, I: Qualitative aspects. J Optim Theory Appl Springer 18:537–554

    Google Scholar 

  • Pierce JG, Schumitzky A (1978) Optimal impulsive control of compartment models, II: algorithm. J Optim Theory Appl Springer 26:581–599

    Google Scholar 

  • Rajabi M, Mousa SA (2017) The role of angiogenesis in cancer treatment. Biomedicines 5(2):34

    Article  Google Scholar 

  • Sbeity H, Younes R (2015) Review of optimization methods for cancer chemotherapy treatment planning. Comput Sci Syst Biol 8:2

    Google Scholar 

  • Schättler H, Ledzewicz U (2010) Optimal control for mathematical models of cancer therapies. Springer, Berlin

    Google Scholar 

  • Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol 54:407–419

    Google Scholar 

  • Sethi SP, Thompson GL (2006) Optimal control theory—applications to management science and economics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Stamova I, Stamov GT (2016) Applied impulsive mathematical models. Springer, Cham, Switzerland

    Book  Google Scholar 

  • Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumor: angiogenesis and vascular remodeling. Front Oncol 4:69

    Article  Google Scholar 

  • Sussmann HJ, Willems JC (1997) 300 Years of optimal control: from the brachistochrone to the maximum principle. IEEE Control Syst. 17(3):32–44

    Google Scholar 

  • Swan GW (1975) Some strategies for harvesting a single species. Bull Math Biol 37:659–673

    Google Scholar 

  • Swan GW (1984) Applications of optimal control theory in biomedicine, vol 60. Dekker, New York, p 1

    Google Scholar 

  • Swan GW (1990) Role of optimal control theory in cancer chemotherapy applications of optimal control theory in biomedicine. Math Biosci 101:237–284

    Google Scholar 

  • Teles FF, Lemos JM (2019) Cancer therapy optimization based on multiple model adaptive control. Biomed Signal Process Control 48:255–264

    Google Scholar 

  • Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capella G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10

    Google Scholar 

  • Welling PG (1997) Pharmacokinetics: processes, mathematics, and applications, 2nd edn. American Chemical Society, Washington DC

    Google Scholar 

  • Yoo SY, Kwon SM (2013) Angiogenesis and Its therapeutic opportunities. Hindawi Publishing Corporation 3013:127170

    Google Scholar 

  • Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L (2016) Current challenges in cancer treatment. Clin Ther 38(7):1551–1566

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João P. Belfo .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Belfo, J.P., Lemos, J.M. (2021). Introduction. In: Optimal Impulsive Control for Cancer Therapy. SpringerBriefs in Electrical and Computer Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-030-50488-5_1

Download citation

Publish with us

Policies and ethics