Skip to main content

Ionic Polymer-Metal Composite (IPMC) Artificial Muscles in Underwater Environments: Review of Actuation, Sensing, Controls, and Applications to Soft Robotics

  • Chapter
  • First Online:
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems

Abstract

In the field of soft robotics, ionic polymer-metal composites (IPMCs) have shown great promise in the advancement of bioinspired actuators and sensors. Their affinity for use in aqueous environments, as well as their low-driving voltages (<5 V), large deformation performance, and capacity for miniaturization, makes them excellent candidates for biomimetic soft robotic systems. Scientists and researchers have explored the many possibilities of using IPMCs in underwater applications as actuators and sensors. This includes the development of artificial fins and other biocomponents such as cilia arrays, artificial skin, and sensing systems akin to fish lateral lines. Herein, the current advances and implementation of the IPMC-based artificial muscles are discussed. This includes an overview of the material and fabrication techniques, examples of bioinspired actuator and sensor designs, utilization of shape memory properties and segmented electrodes for more complex actuation, as well as the application and performance of fabricated devices in underwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    KJK thanks Promode R. Bandyopadhyay for suggesting this experiment.

  2. 2.

    We thank Promode R. Bandyopadhyay for suggesting this experiment.

References

  1. Y. Bar-Cohen, Electroactive polymers as artificial muscles: A review. J. Spacecr. Rocket. 39(6), 822–827 (2002)

    Article  Google Scholar 

  2. L. Hines, K. Petersen, G.Z. Lum, M. Sitti, Soft actuators for small-scale robotics. Adv. Mater. 29(13) (2017)

    Google Scholar 

  3. M. Shahinpoor, Y. Bar-Cohen, T. Xue, J.S. Harrison, J. Smith, Ionic polymer-metal composites as biomimetic sensors and actuators-artificial muscles. ACS Symp. Ser. 726, 25–50 (1999)

    Article  Google Scholar 

  4. K.J. Kim, W. Yim, J.W. Paquette, D. Kim, Ionic polymer-metal composites for underwater operation. J. Intell. Mater. Syst. Struct. 18(2), 123–131 (2007)

    Article  Google Scholar 

  5. M. Shahinpoor, Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater. Struct. 1(1), 91–94 (1992)

    Article  Google Scholar 

  6. W. Yim, J. Lee, K.J. Kim, An artificial muscle actuator for biomimetic underwater propulsors. Bioinspir. Biomim. 2(2), S31–S41 (2007)

    Article  Google Scholar 

  7. Oguro, K., Takenaka, H., Kawami, Y. Actuator Element, United States, (5,268,082) (1993)

    Google Scholar 

  8. M. Shahinpoor, K.J. Kim, Ionic polymer-metal composites: I. Fundamentals. Smart Mater. Struct. 10(4), 819–833 (2001)

    Article  Google Scholar 

  9. K.J. Kim, M. Shahinpoor, Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater. Struct. 12(1), 65–79 (2003)

    Article  Google Scholar 

  10. M. Shahinpoor, K.J. Kim, Ionic polymer-metal composites: III. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13(6), 1362–1388 (2004)

    Article  Google Scholar 

  11. M. Shahinpoor, K.J. Kim, Ionic polymer-metal composites: IV. Industrial and medical applications. Smart Mater. Struct. 14(1), 197–214 (2005)

    Article  Google Scholar 

  12. K.J. Kim, Ionic polymer-metal composites as a new actuator and transducer material, in Electroactive Polymers for Robotics Applications, ed. by K. J. Kim, S. Tadokoro, (Springer, London, 2007), pp. 153–164

    Chapter  Google Scholar 

  13. Y. Bahramzadeh, M. Shahinpoor, A review of ionic polymeric soft actuators and sensors. Soft Robot. 1(1), 38–52 (2014)

    Article  Google Scholar 

  14. J.Y. Li, S. Nemat-Nasser, Micromechanical analysis of ionic clustering in nafion perfluorinated membrane. Mech. Mater. 32(5), 303–314 (2000)

    Article  Google Scholar 

  15. W.Y. Hsu, T.D. Gierke, T.D. Gierke, Elastic theory for ionic clustering in perfluorinated ionomers. Macromolecules 15(1), 101–105 (1982)

    Article  Google Scholar 

  16. V.K. Datye, P.L. Taylor, A.J. Hopfinger, Simple model for clustering and ionic transport in ionomer membranes. Macromolecules 17(9), 1704–1708 (1984)

    Article  Google Scholar 

  17. A. Eisenberg, Clustering of ions in organic polymers. A theoretical approach. Macromolecules 3(2), 147–154 (1970)

    Article  Google Scholar 

  18. S. Trabia, Z.J. Olsen, K.J. Kim, Searching for a new Ionomer for 3D printable ionic polymer-metal composites: Aquivion as a candidate. Smart Mater. Struct. 26(11) (2017)

    Google Scholar 

  19. S. Trabia, K. Choi, Z.J. Olsen, T. Hwang, J.-D. Do Nam, K.J. Kim, Understanding the thermal properties of precursor-ionomers to optimize fabrication processes for ionic polymer-metal composites (IPMCs). Materials (Basel). 11(5), 1–12 (2018)

    Article  Google Scholar 

  20. K.A. Mauritz, R.B. Moore, State of understanding of Nafion. Chem. Rev. 104(10), 4535–4585 (2004)

    Article  Google Scholar 

  21. S. Trabia, T. Hwang, K.J. Kim, A fabrication method of unique Nafion shapes by painting for ionic polymer-metal composites. Smart Mater. Struct. 25(8), 1–11 (2016)

    Article  Google Scholar 

  22. J.D. Carrico, N.W. Traeden, M. Aureli, K.K. Leang, Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Mater. Struct. 24(12), 125021 (2015)

    Article  Google Scholar 

  23. J.D. Carrico, K.K. Leang, Fused filament 3D printing of ionic polymer-metal composites for soft robotics, in Electroactive Polymer Actuators and Devices (EAPAD) 2017, ed. by Y. Bar-Cohen, (SPIE, 2017), p. 101630I

    Google Scholar 

  24. J.D. Carrico, K.J. Kim, K.K. Leang, 3D-Printed ionic polymer-metal composite soft crawling robot, in Proc.—IEEE Int. Conf. Robot. Autom, (2017), pp. 4313–4320

    Google Scholar 

  25. J.H. Jeon, S.W. Yeom, I.K. Oh, Fabrication and actuation of ionic polymer metal composites patterned by combining electroplating with electroless plating. Compos. Part A Appl. Sci. Manuf. 39(4), 588–596 (2008)

    Article  Google Scholar 

  26. M.A. Tsugawa, V. Palmre, J.D. Carrico, K.J. Kim, K.K. Leang, Slender tube-shaped and square rod-shaped IPMC actuators with integrated sensing for soft mechatronics. Meccanica 50(11), 2781–2795 (2015)

    Article  Google Scholar 

  27. Z. Chen, X. Tan, Monolithic fabrication of ionic polymer-metal composite actuators capable of complex deformation. Sensors Actuators A Phys. 157(2), 246–257 (2010)

    Article  Google Scholar 

  28. B.J. Akle, M.D. Bennett, D.J. Leo, K.B. Wiles, J.E. McGrath, Direct assembly process: A novel fabrication technique for large strain ionic polymer transducers. J. Mater. Sci. 42(16), 7031–7041 (2007)

    Article  Google Scholar 

  29. B.J. Akle, M.D. Bennett, D.J. Leo, High-strain ionomeric-ionic liquid electroactive actuators. Sensors Actuators A Phys. 126(1), 173–181 (2006)

    Article  Google Scholar 

  30. J.W. Lee, Y.T. Yoo, Preparation and performance of IPMC actuators with electrospun Nafion®-MWNT composite electrodes. Sensors Actuators B Chem. 159(1), 103–111 (2011)

    Article  Google Scholar 

  31. B.J. Akle, D.J. Leo, Single-walled carbon nanotubes—Ionic polymer electroactive hybrid transducers. J. Intell. Mater. Syst. Struct. 19(8), 905–915 (2008)

    Article  Google Scholar 

  32. V. Palmre, D. Brandell, U. Mäeorg, J. Torop, O. Volobujeva, A. Punning, U. Johanson, M. Kruusmaa, A. Aabloo, Nanoporous carbon-based electrodes for high strain ionomeric bending actuators. Smart Mater. Struct. 18(9), 095028 (2009)

    Article  Google Scholar 

  33. C.K. Chung, P.K. Fung, Y.Z. Hong, M.S. Ju, C.C.K. Lin, T.C. Wu, A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver Nano-powders. Sensors Actuators B Chem. 117(2), 367–375 (2006)

    Article  Google Scholar 

  34. J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, I.-K. Oh, Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes. ACS Nano 8(3), 2986–2997 (2014)

    Article  Google Scholar 

  35. J.W. Lee, J.H. Kim, Y.S. Chun, Y.T. Yoo, S.M. Hong, The performance of Nafion-based IPMC actuators containing Polypyrrole/alumina composite fillers. Macromol. Res. 17(12), 1032–1038 (2009)

    Article  Google Scholar 

  36. G. Di Pasquale, S. Graziani, F.G. Messina, A. Pollicino, R. Puglisi, E. Umana, An investigation of the structure–property relationships in ionic polymer polymer composites (IP 2 Cs) manufactured by polymerization in situ of PEDOT/PSS on Nafion ® 117. Smart Mater. Struct. 23(3), 035018 (2014)

    Article  Google Scholar 

  37. F. Cellini, A. Grillo, M. Porfiri, Ionic polymer metal composites with polypyrrole-silver electrodes. Appl. Phys. Lett. 106(13), 131902 (2015)

    Article  Google Scholar 

  38. S. Nemat-Nasser, S. Zamani, Y. Tor, Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99(10) (2006)

    Google Scholar 

  39. S. Nemat-Nasser, Y. Wu, Tailoring actuation of ionic polymer-metal composites through cation combination. Smart Struct. Mater. 5051, 245–253 (2003)

    Google Scholar 

  40. S. Nemat-Nasser, S. Zamani, Modeling of electrochemomechanical response of ionic polymer-metal composites with various solvents. J. Appl. Phys. 100(6) (2006)

    Google Scholar 

  41. S. Nemat-Nasser, Y. Wu, Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93(9), 5255–5267 (2003)

    Article  Google Scholar 

  42. J.M. Byun, T. Hwang, K.J. Kim, Formation of a gold nanoparticle layer for the electrodes of ionic polymer–metal composites by electroless deposition process. Appl. Surf. Sci. 470, 8–12 (2019)

    Article  Google Scholar 

  43. Z. Zhu, H. Chen, L. Chang, B. Li, Dynamic model of ion and water transport in ionic polymer-metal composites. AIP Adv. 1(4) (2011)

    Google Scholar 

  44. M. Shahinpoor, Y. Bar-Cohen, J.O. Simpson, J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles—A review. Smart Mater. Struct. 7(6), R15–R30 (1998)

    Article  Google Scholar 

  45. J.D.W. Madden, N.A. Vandesteeg, P.A. Anquetil, P.G.A. Madden, A. Takshi, R.Z. Pytel, S.R. Lafontaine, P.A. Wieringa, I.W. Hunter, Artificial muscle technology: Physical principles and naval prospects. IEEE J. Ocean. Eng. 29(3), 706–728 (2004)

    Article  Google Scholar 

  46. S. Nemat-Nasser, J.Y. Li, Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)

    Article  Google Scholar 

  47. M. Porfiri, An electromechanical model for sensing and actuation of ionic polymer metal composites. Smart Mater. Struct. 18(1), 015016 (2009)

    Article  MathSciNet  Google Scholar 

  48. M. Aureli, M. Porfiri, Nonlinear sensing of ionic polymer metal composites. Contin. Mech. Thermodyn. 25(2–4), 273–310 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. P.G. de Gennes, K. Okumura, M. Shahinpoor, K.J. Kim, Mechanoelectric effects in ionic gels. Europhys. Lett. 50(4), 513–518 (2000)

    Article  Google Scholar 

  50. D. Schicker, T. Wallmersperger, Modeling and simulation of the chemo-electro-mechanical behavior of ionic polymer-metal composites. J. Appl. Phys. 114(16), 163709 (2013)

    Article  Google Scholar 

  51. Z. Zhu, K. Asaka, L. Chang, K. Takagi, H. Chen, Multiphysics of ionic polymer-metal composite actuator. J. Appl. Phys. 114(8) (2013)

    Google Scholar 

  52. J.W. Paquette, K.J. Kim, J.-D. Nam, Y.S. Tak, An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nano-composite technique. J. Intell. Mater. Syst. Struct. 14(10), 633–642 (2003)

    Article  Google Scholar 

  53. Y. Cha, M. Aureli, M. Porfiri, A physics-based model of the electrical impedance of ionic polymer metal composites. J. Appl. Phys. 111(12) (2012)

    Google Scholar 

  54. D. Pugal, K.J. Kim, A. Aabloo, An explicit physics-based model of ionic polymer-metal composite actuators. J. Appl. Phys. 110(8) (2011)

    Google Scholar 

  55. T. Wallmersperger, B. Kröplin, R.W. Gülch, Coupled chemo-electro-mechanical formulation for ionic polymer gels—Numerical and experimental investigations. Mech. Mater. 36(5–6), 411–420 (2004)

    Article  Google Scholar 

  56. Z.J. Olsen, K.J. Kim, A reduced dimensional mapping approach for modeling IPMCs with computational efficiency and rapid design development applications. Smart Mater. Struct. 27(12) (2018)

    Google Scholar 

  57. T. Wallmersperger, A. Horstmann, B. Kroplin, D.J. Leo, Thermodynamical modeling of the electromechanical behavior of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 20(6), 741–750 (2009)

    Article  Google Scholar 

  58. P. Nardinocchi, M. Pezzulla, L. Placidi, Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22(16), 1887–1897 (2011)

    Article  Google Scholar 

  59. S. Galante, A. Lucantonio, P. Nardinocchi, The multiplicative decomposition of the deformation gradient in the multiphysics modeling of ionic polymers. Int. J. Non. Linear. Mech. 51, 112–120 (2013)

    Article  Google Scholar 

  60. M. Rossi, T. Wallmersperger, Thermodynamically consistent three-dimensional electrochemical model for polymeric membranes. Electrochim. Acta 283, 1323–1338 (2018)

    Article  Google Scholar 

  61. Y. Cha, M. Porfiri, Mechanics and electrochemistry of ionic polymer metal composites. J. Mech. Phys. Solids 71(1), 156–178 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. M. Porfiri, Charge dynamics in ionic polymer metal composites. J. Appl. Phys. 104(10) (2008)

    Google Scholar 

  63. M. Porfiri, H. Sharghi, P. Zhang, Modeling Back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers. J. Appl. Phys. 123(1), 014901 (2018)

    Article  Google Scholar 

  64. M. Porfiri, Influence of electrode surface roughness and steric effects on the nonlinear electromechanical behavior of ionic polymer metal composites. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 79(4), 1–13 (2009)

    Article  Google Scholar 

  65. P.H.R. Alijó, F.W. Tavares, E.C. Biscaia, A.R. Secchi, Effects of electrostatic correlations on ion dynamics in alternating current voltages. Electrochim. Acta 152, 84–92 (2015)

    Article  Google Scholar 

  66. M.S. Kilic, M.Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 75(2), 1–16 (2007)

    Google Scholar 

  67. M.S. Kilic, M.Z. Bazant, A. Ajdari, Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 75(2), 1–11 (2007)

    Google Scholar 

  68. M. Porfiri, H. Sharghi, P. Zhang, Modeling Back-relaxation in ionic polymer metal composites: The role of steric effects and composite layers. J. Appl. Phys. 123(1), 014901 (2018)

    Article  Google Scholar 

  69. Q. Shen, T. Wang, K.J. Kim, A biomimetic underwater vehicle actuated by waves with ionic polymer-metal composite soft sensors. Bioinspir. Biomim. 10(5), 055007 (2015)

    Article  Google Scholar 

  70. H. Kim, Y. Cha, M. Porfiri, Voltage attenuation along the electrodes of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 27(17), 2426–2430 (2016)

    Article  Google Scholar 

  71. Y. Cha, F. Cellini, M. Porfiri, Electrical impedance controls mechanical sensing in ionic polymer metal composites. Phys. Rev. E Stat. Nonlinear, Soft Matter Phys. 88(6), 1–12 (2013)

    Article  Google Scholar 

  72. C. Lim, H. Lei, X. Tan, A dynamic physics-based model for base-excited IPMC sensors, in Electroactive Polymer Actuators and Devices (EAPAD) 2012, ed. by Y. Bar-Cohen, (SPIE, 2012)

    Google Scholar 

  73. Z. Chen, X. Tan, A. Will, C. Ziel, A dynamic model for ionic polymer-metal composite sensors. Smart Mater. Struct. 16(4), 1477–1488 (2007)

    Article  Google Scholar 

  74. K. Farinholt, D.J. Leo, Modeling of electromechanical charge sensing in ionic polymer transducers. Mech. Mater. 36(5–6), 421–433 (2004)

    Article  Google Scholar 

  75. B. Akle, W. Habchi, Finite element Modeling of the sensing and energy harvesting performance in ionic polymer metal composites, in Electroactive Polymer Actuators and Devices (EAPAD), ed. by Y. Bar-Cohen, (SPIE, 2013), p. 86870G

    Google Scholar 

  76. V. Volpini, L. Bardella, A. Rodella, Y. Cha, M. Porfiri, Modelling compression sensing in ionic polymer metal composites. Smart Mater. Struct. 26(3) (2017)

    Google Scholar 

  77. C. Zheng, X. Tan, A control-oriented and physics-based model for ionic polymer—metal composite actuators. IEEE/ASME Trans. Mechatronics 13(5), 519–529 (2008)

    Article  Google Scholar 

  78. A.J. McDaid, Modelling and Control of IPMC Actuators for Biomedical Robotics Applications (The University of Auckland, 2011)

    Google Scholar 

  79. J.D. Carrico, M. Fleming, M.A. Tsugawa, K.K. Leang, Precision feedback and feedforward control of ionic polymer metal composite actuators, in Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, ed. by M. Shahinpoor, vol. 1, (Royal Society of Chemistry, 2015)

    Google Scholar 

  80. M.A. Rosly, H. Yussof, M.F. Shaari, Z. Samad, D. Kamaruzaman, A.R. Omar, Speed control mechanism for IPMC based biomimetic flapping Thruster, in Proceedings—2017 IEEE 5th International Symposium on Robotics and Intelligent Sensors, IRIS 2017, (2018), pp. 218–223

    Google Scholar 

  81. R.C. Richardson, M.C. Levesley, M.D. Brown, J.A. Hawkes, K. Watterson, P.G. Walker, Control of ionic polymer metal composites. IEEE/ASME Transactions on Mechatronics 8(2), 245–253 (2003)

    Article  Google Scholar 

  82. M.J. Fleming, K.J. Kim, K.K. Leang, Mitigating IPMC Back relaxation through feedforward and feedback control of patterned electrodes. Smart Mater. Struct. 21(8) (2012)

    Google Scholar 

  83. K. Mallavarapu, K.M. Newbury, D.J. Leo, Feedback control of the bending response of ionic polymer-metal composite actuators, in Smart Struct. Mater. 2001 Electroact. Polym. Actuators Devices, July 2001, vol. 4329, (Proc. SPIE, 2001), p. 301

    Google Scholar 

  84. S. Kang, J. Shin, S.J. Kim, H.J. Kim, Y.H. Kim, Robust control of ionic polymer—Metal composites. Smart Mater. Struct. 16 (2007)

    Google Scholar 

  85. H. Khadivi, B.S. Aghazadeh, C. Lucas, Fuzzy control of ionic polymer-metal composites. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 4198–4201 (2007)

    Google Scholar 

  86. Chen, Z., Tan, X., Shahinpoor, M., 2005, Quasi-static positioning of ionic polymer-metal composite (IPMC) actuators Int. Conf. Adv. Intel. Mechatronics, pp. 24–28

    Google Scholar 

  87. Z. Chen, D.R. Hedgepeth, X. Tan, A nonlinear, control-oriented model for ionic polymer-metal composite actuators, in Proc. IEEE Conf. Decis. Control, (2008), pp. 1851–1856

    Google Scholar 

  88. Z. Chen, T.I. Um, H. Bart-Smith, A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors Actuators A Phys. 168(1), 131–139 (2011)

    Article  Google Scholar 

  89. V. Palmre, J.J. Hubbard, M. Fleming, D. Pugal, S. Kim, K.J. Kim, K.K. Leang, An IPMC-enabled bio-inspired bending/twisting fin for underwater applications. Smart Mater. Struct. 22(1) (2013)

    Google Scholar 

  90. C. Zheng, S. Shatara, X. Tan, Modeling of biomimetic robotic fish propelled by an ionic polymer–metal composite caudal fin. IEEE/ASME Trans. Mechatronics 15(3), 448–459 (2010)

    Article  Google Scholar 

  91. M. Aureli, V. Kopman, M. Porfiri, Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatronics 15(4), 603–614 (2010)

    Article  Google Scholar 

  92. Yang, T., Chen, Z., 2015, Development of 2D Maneuverable robotic fish propelled by multiple ionic polymer-metal composite artificial fins 2015 IEEE Int. Conf. Robot. Biomimetics, IEEE-ROBIO 2015, 1(2), pp. 255–260

    Google Scholar 

  93. T. Xie, Tunable polymer multi-shape memory effect. Nature 464(7286), 267–270 (2010)

    Article  Google Scholar 

  94. J. Rossiter, K. Takashima, T. Mukai, Shape memory properties of ionic polymer-metal composites. Smart Mater. Struct. 21(11) (2012)

    Google Scholar 

  95. Q. Shen, S. Trabia, T. Stalbaum, V. Palmre, K. Kim, I.-K.K. Oh, A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation. Sci. Rep. 6, 24462 (2016)

    Article  Google Scholar 

  96. Q. Shen, T. Stalbaum, N. Minaian, I. Oh, A robotic multiple-shape-memory ionic polymer—Metal composite (IPMC) actuator: Modeling approach. Smart Mater. Struct 28(1), 015009 (2019)

    Article  Google Scholar 

  97. Q. Shen, Theoretical and Experimental Investigation on the Multiple Shape Memory Ionic Polymer-Metal Composite Actuator,. Ph.D. Disseration (University of Nevada, Las Vegas, Las Vegas, 2017)

    Google Scholar 

  98. Q. Shen, Z. Olsen, T. Stalbaum, J. Lee, R. Hunt, K.J. Kim, J. Kim, I.-K. Oh, Basic design of a biomimetic underwater soft robot with switchable swimming modes and programmable artificial muscles. Smart Mater. Struct. (2020). In Print

    Google Scholar 

  99. S.-W. Yeom, I.-K. Oh, A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009)

    Article  Google Scholar 

  100. Z.J. Olsen, K.J. Kim, Design and modeling of a new biomimetic soft robotic jellyfish using IPMC-based electroactive polymers. Front. Robot. AI 6(112) (2019)

    Google Scholar 

  101. S.D. Peterson, M. Porfiri, Energy exchange between a vortex ring and an ionic polymer metal composite. Appl. Phys. Lett. 100(11) (2012)

    Google Scholar 

  102. J. Brufau-Penella, M. Puig-Vidal, P. Giannone, S. Graziani, S. Strazzeri, Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater. Struct. 17(1) (2008)

    Google Scholar 

  103. B.R. Martin, Energy Harvesting Applications of Ionic Polymers (Virginia Polytechnic Institute and State University, 2005)

    Google Scholar 

  104. S.V. Anand, K. Arvind, P. Bharath, D. Roy Mahapatra, Energy harvesting using ionic electro-active polymer thin films with Ag-based electrodes. Smart Mater. Struct. 19(4) (2010)

    Google Scholar 

  105. R. Tiwari, K.J. Kim, S.-M. Kim, Ionic polymer-metal composite as energy harvesters. Smart Struct. Syst. 4(5), 549–563 (2008)

    Article  Google Scholar 

  106. Y. Cha, C.N. Phan, M. Porfiri, Energy exchange during slamming impact of an ionic polymer metal composite. Appl. Phys. Lett. 101(9) (2012)

    Google Scholar 

  107. A. Giacomello, M. Porfiri, Underwater energy harvesting from a heavy flag hosting ionic polymer metal composites. J. Appl. Phys. 109(8) (2011)

    Google Scholar 

  108. M. Aureli, C. Prince, M. Porfiri, S.D. Peterson, Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater. Struct. 19(1) (2010)

    Google Scholar 

  109. Y. Cha, S. Abdolhamidi, M. Porfiri, Energy harvesting from underwater vibration of an annular ionic polymer metal composite. Meccanica 50(11), 2675–2690 (2015)

    Article  Google Scholar 

  110. Tiwari, R., Kim, K. J., 2010, “Disc-shaped ionic polymer metal composites for use in MECHANO-electrical applications,” Smart Mater. Struct., 19(6), p. 065016

    Google Scholar 

  111. M. Konyo, Y. Konishi, S. Tadokoro, T. Kishima, Development of velocity sensor using ionic polymer-metal composites, in Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), ed. by Y. Bar-Cohen, (SPIE, 2004), p. 307

    Google Scholar 

  112. K. Kruusamäe, P. Brunetto, S. Graziani, A. Punning, G. Di Pasquale, A. Aabloo, Self-sensing ionic polymer-metal composite actuating device with patterned surface electrodes. Polym. Int. 59(3), 300–304 (2010)

    Article  Google Scholar 

  113. A. Punning, M. Kruusmaa, A. Aabloo, A self-sensing ion conducting polymer metal composite (IPMC) actuator. Sensors Actuators A Phys. 136(2), 656–664 (2007)

    Article  Google Scholar 

  114. W. MohdIsa, A. Hunt, S.H. HosseinNia, Sensing and self-sensing actuation methods for ionic polymer-metal composite (IPMC): A review. Sensors (Basel). 19(18) (2019)

    Google Scholar 

  115. A.T. Abdulsadda, X. Tan, Underwater source localization using an IPMC-based artificial lateral line, in Proc.—IEEE Int. Conf. Robot. Autom, (2011), pp. 2719–2724

    Google Scholar 

  116. M.A. Sharif, X. Tan, A pressure difference sensor inspired by fish canal lateral line. Bioinspir. Biomim. 14(5), 055003 (2019)

    Article  Google Scholar 

  117. Z. Zhu, X. He, Q. He, X. Fang, Q. Hu, H. Chen, Ionic polymer pressure sensor with gradient shape based on ion migration. J. Appl. Phys. 125(2) (2019)

    Google Scholar 

  118. G. Di Pasquale, S. Graziani, A. Pollicino, S. Strazzeri, A vortex-shedding Flowmeter based on IPMCs. Smart Mater. Struct. 25(1) (2015)

    Google Scholar 

  119. M.A.A. Sharif, X. Tan, IPMC flow sensor exploiting self-generated vortices. Electroact. Polym. Actuators Devices XX, 44 (2018)

    Article  Google Scholar 

  120. H. Lei, W. Li, X. Tan, Microfabrication of IPMC cilia for bio-inspired flow sensing, in Electroactive Polymer Actuators and Devices (EAPAD) 2012, ed. by Y. Bar-Cohen, (SPIE, 2012), p. 83401A

    Google Scholar 

  121. K.J. Kim, V. Palmre, T. Stalbaum, T. Kwang, Q. Shen, S. Trabia, Promising developments in marine applications with artificial muscles: electrodeless artificial cilia microfibers. Mar. Technol. Soc. J. 50(5), 24–34 (2016)

    Article  Google Scholar 

  122. S. Sareh, A.T. Conn, J.M. Rossiter, I. Ieropoulos, P. Walters, Optimization of bio-inspired multi-segment IPMC cilia, in Proc. SPIE 7642 Electroactive Polymer Actuators and Devices (EAPAD) 2010, ed. by Y. Bar-Cohen, (SPIE, 2010), p. 76421S

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support from the Office of Naval Research, Grant Number N000141612356. Also, KJK acknowledges the help from Drs. Viljar Palmre, Kam Keang, and Tyler Stalbaum conducting various underwater experiments using IPMCs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang J. Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minaian, N., Olsen, Z.J., Kim, K.J. (2021). Ionic Polymer-Metal Composite (IPMC) Artificial Muscles in Underwater Environments: Review of Actuation, Sensing, Controls, and Applications to Soft Robotics. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_6

Download citation

Publish with us

Policies and ethics