Skip to main content

Abstract

Soft actuators, often also referred as artificial muscles, have been intensively developed in recent decades for constructing novel soft robots and machines. Diverse materials and structures have been designed and fabricated to exhibit various actuating behaviors. This chapter briefly reviews several representative soft actuators that have been recently widely explored, including pneumatic/hydraulic actuators, electroactive polymers, liquid crystal elastomers, responsive hydrogels, shape memory polymers, twisted fiber artificial muscles, and magneto-active elastomers. Their fabrication, performance, unique features, and modelling are discussed in detail. We also discuss special requirements of soft actuators for underwater soft robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.-S. Chu et al., Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Manuf. 13(7), 1281–1292 (2012)

    Article  Google Scholar 

  2. L. Hines et al., Soft actuators for small-scale robotics. Adv. Mater. 29(13), 1603483 (2017)

    Article  Google Scholar 

  3. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521(7553), 467–475 (2015)

    Article  Google Scholar 

  4. P. Polygerinos et al., Soft robotics: Review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19(12), 1700016 (2017)

    Article  Google Scholar 

  5. J. Hughes et al., Soft manipulators and grippers: A review. Front. Robot. AI 3, 69 (2016)

    Article  Google Scholar 

  6. H. Ren, S.-T. Wu, Adaptive lenses based on soft electroactive materials. Appl. Sci. 8(7), 1085 (2018)

    Article  Google Scholar 

  7. C. Christianson et al., Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci Robot 3(17), eaat1893 (2018)

    Article  Google Scholar 

  8. K.C. Galloway et al., Soft robotic grippers for biological sampling on deep reefs. Soft Robot 3(1), 23–33 (2016)

    Article  Google Scholar 

  9. C. Ahn, K. Li, S. Cai, Light or thermally powered autonomous rolling of an elastomer rod. ACS Appl. Mater. Interfaces 10(30), 25689–25696 (2018)

    Article  Google Scholar 

  10. A.H. Gelebart et al., Making waves in a photoactive polymer film. Nature 546(7660), 632 (2017)

    Article  Google Scholar 

  11. Y. Zhao et al., Soft phototactic swimmer based on self-sustained hydrogel oscillator. Sci Robot 4(33), eaax7112 (2019)

    Article  Google Scholar 

  12. R.K. Katzschmann et al., Exploration of underwater life with an acoustically controlled soft robotic fish. Sci Robot 3(16), eaar3449 (2018)

    Article  Google Scholar 

  13. R.E. Pelrine, R.D. Kornbluh, J.P. Joseph, Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors Actuators A Phys. 64(1), 77–85 (1998)

    Article  Google Scholar 

  14. T. Miyata, N. Asami, T. Uragami, A reversibly antigen-responsive hydrogel. Nature 399(6738), 766 (1999)

    Article  Google Scholar 

  15. M.-H. Li, P. Keller, Artificial muscles based on liquid crystal elastomers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2763–2777 (2006)

    Article  Google Scholar 

  16. H. Yuk et al., Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017)

    Article  Google Scholar 

  17. M. Wissler, E. Mazza, Modeling of a pre-strained circular actuator made of dielectric elastomers. Sensors Actuators A Phys. 120(1), 184–192 (2005)

    Article  Google Scholar 

  18. P.C. Branco, J. Dente, Derivation of a continuum model and its electric equivalent-circuit representation for ionic polymer–metal composite (IPMC) electromechanics. Smart Mater. Struct. 15(2), 378 (2006)

    Article  Google Scholar 

  19. C. Ahn, X. Liang, S. Cai, Bioinspired design of light-powered crawling, squeezing, and jumping untethered soft robot. Adv. Mater. Technol. 4(7), 1900185 (2019)

    Article  Google Scholar 

  20. S. Cai, Z. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels. J. Mech. Phys. Solids 59(11), 2259–2278 (2011)

    Article  MATH  Google Scholar 

  21. K. Yu et al., Mechanisms of multi-shape memory effects and associated energy release in shape memory polymers. Soft Matter 8(20), 5687–5695 (2012)

    Article  Google Scholar 

  22. B. Gorissen et al., Elastic inflatable actuators for soft robotic applications. Adv. Mater. 29(43), 1604977 (2017)

    Article  Google Scholar 

  23. C.-P. Chou, B. Hannaford, Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  24. F. Daerden, D. Lefeber, The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power 2(3), 41–50 (2001)

    Article  Google Scholar 

  25. D. Yang et al., Buckling pneumatic linear actuators inspired by muscle. Advanced Materials Technologies 1(3), 1600055 (2016)

    Article  Google Scholar 

  26. E. Brown et al., Universal robotic gripper based on the jamming of granular material. Proc. Natl. Acad. Sci. 107(44), 18809–18814 (2010)

    Article  Google Scholar 

  27. M.A. Robertson, J. Paik, New soft robots really suck: Vacuum-powered systems empower diverse capabilities. Sci Robot 2, eaan6357 (2017)

    Article  Google Scholar 

  28. S. Li et al., Fluid-driven origami-inspired artificial muscles. Proc. Natl. Acad. Sci. 114(50), 13132–13137 (2017)

    Article  Google Scholar 

  29. F. Daerden, D. Lefeber, Pneumatic artificial muscles: Actuators for robotics and automation. Eur. J. Mech. Environ. Eng. 47(1), 11–21 (2002)

    Google Scholar 

  30. B. Tondu et al., A seven-degrees-of-freedom robot-arm driven by pneumatic artificial muscles for humanoid robots. Int. J. Robot. Res. 24(4), 257–274 (2005)

    Article  Google Scholar 

  31. F. Connolly et al., Mechanical programming of soft actuators by varying fiber angle. Soft Robotics 2(1), 26–32 (2015)

    Article  Google Scholar 

  32. F. Connolly, C.J. Walsh, K. Bertoldi, Automatic design of fiber-reinforced soft actuators for trajectory matching. Proc. Natl. Acad. Sci. 114(1), 51–56 (2017)

    Article  Google Scholar 

  33. S.Y. Kim et al., Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10(1), 1–8 (2019)

    MathSciNet  Google Scholar 

  34. Y. Xia, G.M. Whitesides, Soft lithography. Annu. Rev. Mater. Sci. 28(1), 153–184 (1998)

    Article  Google Scholar 

  35. F. Ilievski et al., Soft robotics for chemists. Angew. Chem. Int. Ed. 50(8), 1890–1895 (2011)

    Article  Google Scholar 

  36. S.Y. Kim et al., Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10(1), 3464 (2019)

    Article  Google Scholar 

  37. D. Drotman et al., 3D printed soft actuators for a legged robot capable of navigating unstructured terrain, in 2017 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2017)

    Google Scholar 

  38. O.D. Yirmibesoglu et al., Direct 3D printing of silicone elastomer soft robots and their performance comparison with molded counterparts, in 2018 IEEE International Conference on Soft Robotics (RoboSoft), (IEEE, 2018)

    Google Scholar 

  39. R.L. Truby et al., Soft somatosensitive actuators via embedded 3D printing. Adv. Mater. 30(15), 1706383 (2018)

    Article  Google Scholar 

  40. P. Moseley et al., Modeling, design, and development of soft pneumatic actuators with finite element method. Adv. Eng. Mater. 18(6), 978–988 (2016)

    Article  Google Scholar 

  41. D. Yang et al., Buckling of elastomeric beams enables actuation of soft machines. Adv. Mater. 27(41), 6323–6327 (2015)

    Article  Google Scholar 

  42. P. Glick et al., A soft robotic gripper with gecko-inspired adhesive. IEEE Robot. Autom. Lett. 3(2), 903–910 (2018)

    Article  MathSciNet  Google Scholar 

  43. S. Song, C. Majidi, M. Sitti, Geckogripper: A soft, inflatable robotic gripper using gecko-inspired elastomer micro-fiber adhesives, in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IEEE, 2014)

    Google Scholar 

  44. R.F. Shepherd et al., Multigait soft robot. Proc. Natl. Acad. Sci. 108(51), 20400–20403 (2011)

    Article  Google Scholar 

  45. S.A. Morin et al., Camouflage and display for soft machines. Science 337(6096), 828–832 (2012)

    Article  Google Scholar 

  46. M. Wehner et al., An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451 (2016)

    Article  Google Scholar 

  47. A. Rafsanjani et al., Kirigami skins make a simple soft actuator crawl. Sci Robot 3(15), eaar7555 (2018)

    Article  Google Scholar 

  48. P. Brochu, Q. Pei, Advances in dielectric elastomers for actuators and artificial muscles. Macromol. Rapid Commun. 31(1), 10–36 (2010)

    Article  Google Scholar 

  49. U. Gupta et al., Soft robots based on dielectric elastomer actuators: A review. Smart Mater. Struct. 28(10), 103002 (2019)

    Article  Google Scholar 

  50. R. Pelrine et al., High-speed electrically actuated elastomers with strain greater than 100%. Science 287(5454), 836–839 (2000)

    Article  Google Scholar 

  51. X. Ji et al., An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci Robot 4(37) (2019)

    Google Scholar 

  52. M.Z. Uddin et al., Electrically induced creeping and bending deformation of plasticized poly (vinyl chloride). Chem. Lett. 30(4), 360–361 (2001)

    Article  Google Scholar 

  53. H. Xia, M. Takasaki, T. Hirai, Actuation mechanism of plasticized PVC by electric field. Sensors Actuators A Phys. 157(2), 307–312 (2010)

    Article  Google Scholar 

  54. Y. Li, M. Hashimoto, PVC gel based artificial muscles: Characterizations and actuation modular constructions. Sensors Actuators A Phys. 233, 246–258 (2015)

    Article  Google Scholar 

  55. J.W. Bae et al., High-performance PVC gel for adaptive micro-lenses with variable focal length. Sci. Rep. 7(1), 2068 (2017)

    Article  Google Scholar 

  56. T. Hirai et al., Electrically active artificial pupil showing amoeba-like pseudopodial deformation. Adv. Mater. 21(28), 2886–2888 (2009)

    Article  Google Scholar 

  57. P. Huang, Z. Zhou, H. Ren, Fresnel zone plate fabricated using a polyvinyl chloride gel. Opt. Eng. 57(11), 117101 (2018)

    Article  Google Scholar 

  58. N. Ning et al., Tailoring dielectric and actuated properties of elastomer composites by bioinspired poly (dopamine) encapsulated graphene oxide. ACS Appl. Mater. Interfaces 7(20), 10755–10762 (2015)

    Article  Google Scholar 

  59. T.A. Kim et al., Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon 50(2), 444–449 (2012)

    Article  Google Scholar 

  60. C. Keplinger et al., Stretchable, transparent, ionic conductors. Science 341(6149), 984–987 (2013)

    Article  Google Scholar 

  61. M. Vatankhah-Varnoosfaderani et al., Bottlebrush elastomers: A new platform for freestanding electroactuation. Adv. Mater. 29(2), 1604209 (2017)

    Article  Google Scholar 

  62. S.M. Ha et al., Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain. Smart Mater. Struct. 16(2), S280 (2007)

    Article  MathSciNet  Google Scholar 

  63. X. Niu et al., Bistable large-strain actuation of interpenetrating polymer networks. Adv. Mater. 24(48), 6513–6519 (2012)

    Article  Google Scholar 

  64. N. Kellaris et al., Peano-HASEL actuators: Muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci Robot 3(14), eaar3276 (2018)

    Article  Google Scholar 

  65. Z. Suo, Theory of dielectric elastomers. Acta Mechanica Solida Sinica 23(6), 549–578 (2010)

    Article  Google Scholar 

  66. S.J.A. Koh et al., Mechanisms of large actuation strain in dielectric elastomers. J Polym Sci B 49(7), 504–515 (2011)

    Article  Google Scholar 

  67. S.M. Jiménez, R.M. McMeeking, Deformation dependent dielectric permittivity and its effect on actuator performance and stability. Int. J. Non Lin. Mech. 57, 183–191 (2013)

    Article  Google Scholar 

  68. A. Dorfmann, R. Ogden, Nonlinear electroelasticity. Acta Mech. 174(3–4), 167–183 (2005)

    Article  MATH  Google Scholar 

  69. A. Dorfmann, R. Ogden, Nonlinear electroelastic deformations. J. Elast. 82(2), 99–127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  70. X. Zhao, Z. Suo, Method to analyze electromechanical stability of dielectric elastomers. Appl. Phys. Lett. 91(6), 061921 (2007)

    Article  Google Scholar 

  71. X. Zhao, Z. Suo, Theory of dielectric elastomers capable of giant deformation of actuation. Phys. Rev. Lett. 104(17), 178302 (2010)

    Article  Google Scholar 

  72. T. Li et al., Fast-moving soft electronic fish. Sci. Adv. 3(4), e1602045 (2017)

    Article  MathSciNet  Google Scholar 

  73. R. Pelrine et al., Dielectric elastomer artificial muscle actuators: toward biomimetic motion, in Smart Structures and Materials 2002: Electroactive polymer actuators and devices (EAPAD), (International Society for Optics and Photonics, 2002)

    Google Scholar 

  74. Q. Pei et al., Recent progress on electroelastomer artificial muscles and their application for biomimetic robots, in Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), (International Society for Optics and Photonics, 2004)

    Google Scholar 

  75. S. Shian, K. Bertoldi, D.R. Clarke, Dielectric elastomer based “grippers” for soft robotics. Adv. Mater. 27(43), 6814–6819 (2015)

    Article  Google Scholar 

  76. S. Shian, R.M. Diebold, D.R. Clarke, Tunable lenses using transparent dielectric elastomer actuators. Opt. Express 21(7), 8669–8676 (2013)

    Article  Google Scholar 

  77. F. Carpi et al., Bioinspired tunable lens with muscle-like electroactive elastomers. Adv. Funct. Mater. 21(21), 4152–4158 (2011)

    Article  Google Scholar 

  78. T. Lu et al., Computational model of deformable lenses actuated by dielectric elastomers. J. Appl. Phys. 114(10), 104104 (2013)

    Article  Google Scholar 

  79. J. Li et al., A biomimetic soft lens controlled by electrooculographic signal. Adv. Funct. Mater., 1903762 (2019)

    Google Scholar 

  80. P. Lotz, M. Matysek, H.F. Schlaak, Peristaltic pump made of dielectric elastomer actuators, in Electroactive Polymer Actuators and Devices (EAPAD), 2009, (International Society for Optics and Photonics, 2009)

    Google Scholar 

  81. D. McCoul, Q. Pei, Tubular dielectric elastomer actuator for active fluidic control. Smart Mater. Struct. 24(10), 105016 (2015)

    Article  Google Scholar 

  82. I.M. Koo et al., Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008)

    Article  Google Scholar 

  83. M. Shahinpoor, Ionic polymer–conductor composites as biomimetic sensors, robotic actuators and artificial muscles—A review. Electrochim. Acta 48(14–16), 2343–2353 (2003)

    Article  Google Scholar 

  84. B. Bhandari, G.-Y. Lee, S.-H. Ahn, A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13(1), 141–163 (2012)

    Article  Google Scholar 

  85. R. Tiwari, E. Garcia, The state of understanding of ionic polymer metal composite architecture: A review. Smart Mater. Struct. 20(8), 083001 (2011)

    Article  Google Scholar 

  86. C. Jo et al., Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38(7), 1037–1066 (2013)

    Article  Google Scholar 

  87. M. Shahinpoor, Mechanoelectrical phenomena in ionic polymers. Mathematics and Mechanics of Solids 8(3), 281–288 (2003)

    Article  MATH  Google Scholar 

  88. Y. Lian et al., Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J. Phys. Chem. C 114(21), 9659–9663 (2010)

    Article  Google Scholar 

  89. L. Kong, W. Chen, Carbon nanotube and Graphene-based bioinspired electrochemical actuators. Adv. Mater. 26(7), 1025–1043 (2014)

    Article  Google Scholar 

  90. C.-K. Chung et al., A novel fabrication of ionic polymer-metal composites (IPMC) actuator with silver nano-powders. Sens. Actuators B 117(2), 367–375 (2006)

    Article  Google Scholar 

  91. Y. Tang et al., Novel sulfonated polysulfone ion exchange membranes for ionic polymer–metal composite actuators. Sens. Actuators B 202, 1164–1174 (2014)

    Article  Google Scholar 

  92. J.-W. Lee, Y.-T. Yoo, Preparation and performance of IPMC actuators with electrospun Nafion®–MWNT composite electrodes. Sens. Actuators B 159(1), 103–111 (2011)

    Article  Google Scholar 

  93. S. Nemat-Nasser, J.Y. Li, Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)

    Article  Google Scholar 

  94. Z. Chen et al., A dynamic model for ionic polymer–metal composite sensors. Smart Mater. Struct. 16(4), 1477 (2007)

    Article  Google Scholar 

  95. P. Nardinocchi, M. Pezzulla, L. Placidi, Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22(16), 1887–1897 (2011)

    Article  Google Scholar 

  96. P. Brunetto et al., A model of ionic polymer–metal composite actuators in underwater operations. Smart Mater. Struct. 17(2), 025029 (2008)

    Article  Google Scholar 

  97. N. Kamamichi et al., A snake-like swimming robot using IPMC actuator/sensor, in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, (IEEE, 2006)

    Google Scholar 

  98. X. Ye, Y. Su, S. Guo, A centimeter-scale autonomous robotic fish actuated by IPMC actuator, in 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO). 2007, (IEEE)

    Google Scholar 

  99. M. Aureli, V. Kopman, M. Porfiri, Free-locomotion of underwater vehicles actuated by ionic polymer metal composites. IEEE/ASME Trans. Mechatron. 15(4), 603–614 (2009)

    Article  Google Scholar 

  100. R.K. Jain, S. Majumder, A. Dutta, SCARA based peg-in-hole assembly using compliant IPMC micro gripper. Robot. Auton. Syst. 61(3), 297–311 (2013)

    Article  Google Scholar 

  101. J.J. Pak et al., Fabrication of ionic-polymer-metal-composite (IPMC) micropump using a commercial Nafion, in Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), (International Society for Optics and Photonics, 2004)

    Google Scholar 

  102. Y. Bahramzadeh, M. Shahinpoor, Dynamic curvature sensing employing ionic-polymer–metal composite sensors. Smart Mater. Struct. 20(9), 094011 (2011)

    Article  Google Scholar 

  103. C. Wang et al., Soft ultrathin electronics innervated adaptive fully soft robots. Adv. Mater. 30(13), 1706695 (2018)

    Article  Google Scholar 

  104. Q. He et al., Bioinspired design of vascular artificial muscle. Advanced Materials Technologies 4(1), 1800244 (2019)

    Article  Google Scholar 

  105. Q. He et al., Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation. Sci. Adv. 5(10), eaax5746 (2019)

    Article  Google Scholar 

  106. M.O. Saed et al., High strain actuation liquid crystal elastomers via modulation of mesophase structure. Soft Matter 13(41), 7537–7547 (2017)

    Article  Google Scholar 

  107. Z. Wang et al., A light-powered Ultralight Tensegrity robot with high deformability and load capacity. Adv. Mater. 31(7), 1806849 (2019)

    Article  Google Scholar 

  108. T.H. Ware et al., Voxelated liquid crystal elastomers. Science 347(6225), 982–984 (2015)

    Article  Google Scholar 

  109. C. Yakacki et al., Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol–acrylate reaction. RSC Adv. 5(25), 18997–19001 (2015)

    Article  Google Scholar 

  110. J. Küpfer, H. Finkelmann, Nematic liquid single crystal elastomers. Makromol. Chem. Rapid 12(12), 717–726 (1991)

    Article  Google Scholar 

  111. Z. Wang et al., Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds. ACS Appl. Mater. Interfaces 9(38), 33119–33128 (2017)

    Article  Google Scholar 

  112. Z. Wang et al., Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter 15(13), 2811–2816 (2019)

    Article  Google Scholar 

  113. E.C. Davidson et al., 3D printable and reconfigurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv. Mater. 32(1), e1905682 (2019)

    Article  Google Scholar 

  114. A. Kotikian et al., 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018)

    Article  Google Scholar 

  115. M. López-Valdeolivas et al., 4D printed actuators with soft-robotic functions. Macromol. Rapid Commun. 39(5), 1700710 (2018)

    Article  Google Scholar 

  116. C.P. Ambulo et al., Four-dimensional printing of liquid crystal elastomers. ACS Appl. Mater. Interfaces 9(42), 37332–37339 (2017)

    Article  Google Scholar 

  117. S. Schuhladen et al., Iris-like Tunable aperture employing liquid-crystal elastomers. Adv. Mater. 26(42), 7247–7251 (2014)

    Article  Google Scholar 

  118. C. Yuan et al., 3D printed reversible shape changing soft actuators assisted by liquid crystal elastomers. Soft Matter 13(33), 5558–5568 (2017)

    Article  Google Scholar 

  119. Z.C. Jiang, Y.Y. Xiao, Y. Zhao, Shining light on liquid crystal polymer networks: Preparing, reconfiguring, and driving soft actuators. Advanced Optical Materials 7(16), 1900262 (2019)

    Article  Google Scholar 

  120. T. Ube, T. Ikeda, Photomobile polymer materials with complex 3D deformation, continuous motions, self-regulation, and enhanced processability. Adv. Opt. Mater. 7(16), 1900380 (2019)

    Article  Google Scholar 

  121. H. Zeng et al., Self-regulating iris based on light-actuated liquid crystal elastomer. Adv. Mater. 29(30), 1701814 (2017)

    Article  Google Scholar 

  122. S. Palagi et al., Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots. Nat. Mater. 15(6), 647 (2016)

    Article  Google Scholar 

  123. M. Rogóż et al., Light-driven soft robot mimics caterpillar locomotion in natural scale. Advanced Optical Materials 4(11), 1689–1694 (2016)

    Article  Google Scholar 

  124. J.M. Boothby, H. Kim, T.H. Ware, Shape changes in chemoresponsive liquid crystal elastomers. Sens. Actuators B 240, 511–518 (2017)

    Article  Google Scholar 

  125. C. Ahn, X. Liang, S. Cai, Inhomogeneous stretch induced patterning of molecular orientation in liquid crystal elastomers. Extr. Mech. nics Lett. 5, 30–36 (2015)

    Article  Google Scholar 

  126. X. Qian et al., Untethered recyclable tubular actuators with versatile locomotion for soft continuum robots. Adv. Mater. 30(29), 1801103 (2018)

    Article  Google Scholar 

  127. X. Lu et al., Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv. Mater. 30(14), 1706597 (2018)

    Article  Google Scholar 

  128. A. Kotikian et al., Untethered soft robotic matter with passive control of shape morphing and propulsion. Sci Robot 4(33), eaax7044 (2019)

    Article  Google Scholar 

  129. X. Lu et al., Tunable photocontrolled motions using stored strain energy in malleable azobenzene liquid crystalline polymer actuators. Adv. Mater. 29(28), 1606467 (2017)

    Article  Google Scholar 

  130. H. Tian et al., Polydopamine-coated main-chain liquid crystal elastomer as optically driven artificial muscle. ACS Appl. Mater. Interfaces 10(9), 8307–8316 (2018)

    Article  Google Scholar 

  131. M. Camacho-Lopez et al., Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 3(5), 307 (2004)

    Article  Google Scholar 

  132. S. Iamsaard et al., Conversion of light into macroscopic helical motion. Nat. Chem. 6(3), 229 (2014)

    Article  Google Scholar 

  133. M. Wang, B.-P. Lin, H. Yang, A plant tendril mimic soft actuator with phototunable bending and chiral twisting motion modes. Nat. Commun. 7, 13981 (2016)

    Article  Google Scholar 

  134. O.M. Wani, H. Zeng, A. Priimagi, A light-driven artificial flytrap. Nat. Commun. 8, 15546 (2017)

    Article  Google Scholar 

  135. A. Richter et al., Micropumps operated by swelling and shrinking of temperature-sensitive hydrogels. Lab Chip 9(4), 613–618 (2009)

    Article  Google Scholar 

  136. E. Lee et al., Photothermally driven fast responding photo-actuators fabricated with comb-type hydrogels and magnetite nanoparticles. Sci. Rep. 5, 15124 (2015)

    Article  Google Scholar 

  137. R. Fuhrer et al., Crosslinking metal nanoparticles into the polymer backbone of hydrogels enables preparation of soft, magnetic field-driven actuators with muscle-like flexibility. Small 5(3), 383–388 (2009)

    Article  Google Scholar 

  138. S.-C. Chen et al., A novel pH-sensitive hydrogel composed of N, O-carboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release 96(2), 285–300 (2004)

    Article  Google Scholar 

  139. R. Zhang et al., A novel pH-and ionic-strength-sensitive carboxy methyl dextran hydrogel. Biomaterials 26(22), 4677–4683 (2005)

    Article  Google Scholar 

  140. J.W. Lee et al., Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). J. Appl. Polym. Sci. 73(1), 113–120 (1999)

    Article  Google Scholar 

  141. E. Karadağ, D. SARAYDIN, Swelling of superabsorbent acrylamide/sodium acrylate hydrogels prepared using multifunctional crosslinkers. Turk. J. Chem. 26(6), 863–876 (2002)

    Google Scholar 

  142. J.H. Kim et al., Rapid temperature/pH response of porous alginate-g-poly (N-isopropylacrylamide) hydrogels. Polymer 43(26), 7549–7558 (2002)

    Article  Google Scholar 

  143. B. Sun et al., Porous double network gels with high toughness, high stretchability and fast solvent-absorption. Soft Matter 13(38), 6852–6857 (2017)

    Article  Google Scholar 

  144. Q. Tang et al., Two-step synthesis of polyacrylamide/polyacrylate interpenetrating network hydrogels and its swelling/deswelling properties. J. Mater. Sci. 43(17), 5884–5890 (2008)

    Article  Google Scholar 

  145. H. Tang, B. Zhang, P. Wu, On the two-step phase transition behavior of the poly (N-isopropylacrylamide)(PNIPAM) brush: Different zones with different orders. Soft Matter 10(37), 7278–7284 (2014)

    Article  Google Scholar 

  146. S. Nesrinne, A. Djamel, Synthesis, characterization and rheological behavior of pH sensitive poly (acrylamide-co-acrylic acid) hydrogels. Arab. J. Chem. 10(4), 539–547 (2017)

    Article  Google Scholar 

  147. L. Toman et al., Amphiphilic conetworks. II. Novel two-step synthesis of poly [2-(dimethylamino) ethyl methacrylate]–polyisobutylene, poly (N-isopropylacrylamide)–polyisobutylene, and poly (N, N-dimethylacrylamide)–polyisobutylene hydrogels. J. Polym. Sci. A Polym. Chem. 44(21), 6378–6384 (2006)

    Article  Google Scholar 

  148. E.M. Ahmed, Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 6(2), 105–121 (2015)

    Article  Google Scholar 

  149. S.K. De et al., Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. J. Microelectromech. Syst. 11(5), 544–555 (2002)

    Article  Google Scholar 

  150. S. Deshmukh et al., Molecular modeling of thermo-responsive hydrogels: Observation of lower critical solution temperature. Soft Matter 5(7), 1514–1521 (2009)

    Article  Google Scholar 

  151. P.J. Flory, J. Rehner Jr., Statistical mechanics of cross-linked polymer networks I. rubberlike elasticity. J. Chem. Phys. 11(11), 512–520 (1943)

    Article  Google Scholar 

  152. R. Marcombe et al., A theory of constrained swelling of a pH-sensitive hydrogel. Soft Matter 6(4), 784–793 (2010)

    Article  Google Scholar 

  153. M. Dehghany et al., A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels. J. Mech. Phys. Solids 116, 239–266 (2018)

    Article  MathSciNet  Google Scholar 

  154. W. Hong, Z. Liu, Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. Int. J. Solids Struct. 46(17), 3282–3289 (2009)

    Article  MATH  Google Scholar 

  155. G. Longhi et al., Molecular dynamics simulation of a model oligomer for poly (N-isopropylamide) in water. Chem. Phys. Lett. 386(1–3), 123–127 (2004)

    Article  Google Scholar 

  156. S. Maeda et al., Self-walking gel. Adv. Mater. 19(21), 3480–3484 (2007)

    Article  Google Scholar 

  157. D. Morales et al., Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter 10(9), 1337–1348 (2014)

    Article  Google Scholar 

  158. E. Palleau et al., Reversible patterning and actuation of hydrogels by electrically assisted ionoprinting. Nat. Commun. 4, 2257 (2013)

    Article  Google Scholar 

  159. M. Liu et al., An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517(7532), 68 (2015)

    Article  Google Scholar 

  160. T. Xie, Tunable polymer multi-shape memory effect. Nature 464(7286), 267 (2010)

    Article  Google Scholar 

  161. Q. Zhao, H.J. Qi, T. Xie, Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 49, 79–120 (2015)

    Article  Google Scholar 

  162. T. Chung, A. Romo-Uribe, P.T. Mather, Two-way reversible shape memory in a semicrystalline network. Macromolecules 41(1), 184–192 (2008)

    Article  Google Scholar 

  163. M. Behl et al., Reversible bidirectional shape-memory polymers. Adv. Mater. 25(32), 4466–4469 (2013)

    Article  Google Scholar 

  164. J. Zotzmann et al., Reversible triple-shape effect of polymer networks containing polypentadecalactone-and poly (ε-caprolactone)-segments. Adv. Mater. 22(31), 3424–3429 (2010)

    Article  Google Scholar 

  165. J. Zhou et al., Shapeshifting: Reversible shape memory in semicrystalline elastomers. Macromolecules 47(5), 1768–1776 (2014)

    Article  Google Scholar 

  166. Z. Li et al., Polydopamine coated shape memory polymer: Enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization. Chem. Sci. 7(7), 4741–4747 (2016)

    Article  Google Scholar 

  167. J.R. Kumpfer, S.J. Rowan, Thermo-, photo-, and chemo-responsive shape-memory properties from photo-cross-linked metallo-supramolecular polymers. J. Am. Chem. Soc. 133(32), 12866–12874 (2011)

    Article  Google Scholar 

  168. J. Leng et al., Electroactivate shape-memory polymer filled with nanocarbon particles and short carbon fibers. Appl. Phys. Lett. 91(14), 144105 (2007)

    Article  Google Scholar 

  169. J. Leng et al., Significantly reducing electrical resistivity by forming conductive Ni chains in a polyurethane shape-memory polymer/carbon-black composite. Appl. Phys. Lett. 92(20), 204101 (2008)

    Article  Google Scholar 

  170. X. Luo, P.T. Mather, Conductive shape memory nanocomposites for high speed electrical actuation. Soft Matter 6(10), 2146–2149 (2010)

    Article  Google Scholar 

  171. Y. Liu et al., Review of electro-active shape-memory polymer composite. Compos. Sci. Technol. 69(13), 2064–2068 (2009)

    Article  Google Scholar 

  172. R. Mohr et al., Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers. Proc. Natl. Acad. Sci. 103(10), 3540–3545 (2006)

    Article  Google Scholar 

  173. H. Du, J. Zhang, Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly (vinyl alcohol). Soft Matter 6(14), 3370–3376 (2010)

    Article  Google Scholar 

  174. D. Quitmann et al., Solvent-sensitive reversible stress-response of shape memory natural rubber. ACS Appl. Mater. Interfaces 5(9), 3504–3507 (2013)

    Article  Google Scholar 

  175. T. Xie, I.A. Rousseau, Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 50(8), 1852–1856 (2009)

    Article  Google Scholar 

  176. N. Zheng et al., High strain epoxy shape memory polymer. Polym. Chem. 6(16), 3046–3053 (2015)

    Article  Google Scholar 

  177. W. Huang et al., Water-driven programmable polyurethane shape memory polymer: Demonstration and mechanism. Appl. Phys. Lett. 86(11), 114105 (2005)

    Article  Google Scholar 

  178. W. Huang et al., Thermo-moisture responsive polyurethane shape-memory polymer and composites: A review. J. Mater. Chem. 20(17), 3367–3381 (2010)

    Article  Google Scholar 

  179. A. Lendlein et al., Shape-memory polymer networks from oligo (ϵ-caprolactone) dimethacrylates. J. Polym. Sci. A Polym. Chem. 43(7), 1369–1381 (2005)

    Article  Google Scholar 

  180. L. Xiao et al., Novel triple-shape PCU/PPDO interpenetrating polymer networks constructed by self-complementary quadruple hydrogen bonding and covalent bonding. Polym. Chem. 5(7), 2231–2241 (2014)

    Article  Google Scholar 

  181. M. Zarek et al., 3D printing of shape memory polymers for flexible electronic devices. Adv. Mater. 28(22), 4449–4454 (2016)

    Article  Google Scholar 

  182. Q. Ge et al., Multimaterial 4D printing with tailorable shape memory polymers. Sci. Rep. 6, 31110 (2016)

    Article  Google Scholar 

  183. Y. Mao et al., Sequential self-folding structures by 3D printed digital shape memory polymers. Sci. Rep. 5, 13616 (2015)

    Article  Google Scholar 

  184. H.J. Qi, M.L. Dunn, Thermomechanical behavior and modeling approaches, in shape-memory polymers and multifunctional composites (CRC Press, 2010), pp. 75–100

    Google Scholar 

  185. T.D. Nguyen et al., A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation. J. Mech. Phys. Solids 56(9), 2792–2814 (2008)

    Article  MATH  Google Scholar 

  186. T.D. Nguyen, Modeling shape-memory behavior of polymers. Polym. Rev. 53(1), 130–152 (2013)

    Article  Google Scholar 

  187. H.J. Qi et al., Finite deformation thermo-mechanical behavior of thermally induced shape memory polymers. J. Mech. Phys. Solids 56(5), 1730–1751 (2008)

    Article  MATH  Google Scholar 

  188. Y. Liu et al., Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. Int. J. Plast. 22(2), 279–313 (2006)

    Article  MATH  Google Scholar 

  189. J. Diani et al., Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. Int. J. Solids Struct. 49(5), 793–799 (2012)

    Article  Google Scholar 

  190. O. Balogun, C. Mo, Shape memory polymers: Three-dimensional isotropic modeling. Smart Mater. Struct. 23(4), 045008 (2014)

    Article  Google Scholar 

  191. X. Lan et al., Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater. Struct. 18(2), 024002 (2009)

    Article  Google Scholar 

  192. B. Jin et al., Programming a crystalline shape memory polymer network with thermo-and photo-reversible bonds toward a single-component soft robot. Sci. Adv. 4(1), eaao3865 (2018)

    Article  Google Scholar 

  193. K. Takashima, J. Rossiter, T. Mukai, McKibben artificial muscle using shape-memory polymer. Sens. Actuators A Phys. 164(1–2), 116–124 (2010)

    Article  Google Scholar 

  194. C.S. Haines et al., Artificial muscles from fishing line and sewing thread. Science 343(6173), 868–872 (2014)

    Article  Google Scholar 

  195. S.M. Mirvakili, I.W. Hunter, Artificial muscles: Mechanisms, applications, and challenges. Adv. Mater. 30(6), 1704407 (2018)

    Article  Google Scholar 

  196. S.M. Mirvakili et al., Simple and strong: twisted silver painted nylon artificial muscle actuated by Joule heating, in Electroactive Polymer Actuators and Devices (EAPAD), 2014, (International Society for Optics and Photonics, 2014)

    Google Scholar 

  197. J. Foroughi et al., Torsional carbon nanotube artificial muscles. Science 334(6055), 494–497 (2011)

    Article  Google Scholar 

  198. M.D. Lima et al., Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles. Science 338(6109), 928–932 (2012)

    Article  Google Scholar 

  199. S.M. Mirvakili, I.W. Hunter, Bending artificial muscle from nylon filaments. in Electroactive Polymer Actuators and Devices (EAPAD), 2016 (International Society for Optics and Photonics, 2016)

    Google Scholar 

  200. S.M. Mirvakili et al., Niobium nanowire yarns and their application as artificial muscles. Adv. Funct. Mater. 23(35), 4311–4316 (2013)

    Article  Google Scholar 

  201. S.M. Mirvakili, I.W. Hunter, Multidirectional artificial muscles from nylon. Adv. Mater. 29(4), 1604734 (2017)

    Article  Google Scholar 

  202. P. Chen et al., Hierarchically arranged helical fibre actuators driven by solvents and vapours. Nat. Nanotechnol. 10(12), 1077 (2015)

    Article  Google Scholar 

  203. M. Hiraoka et al., Power-efficient low-temperature woven coiled fibre actuator for wearable applications. Sci. Rep. 6, 36358 (2016)

    Article  Google Scholar 

  204. S.Y. Yang et al., High performance twisted and coiled soft actuator with spandex fiber for artificial muscles. Smart Mater. Struct. 26(10), 105025 (2017)

    Article  Google Scholar 

  205. J. Yuan et al., Shape memory nanocomposite fibers for untethered high-energy microengines. Science 365(6449), 155–158 (2019)

    Article  Google Scholar 

  206. J. Mu et al., Sheath-run artificial muscles. Science 365(6449), 150–155 (2019)

    Article  Google Scholar 

  207. S. Sharafi, G. Li, A multiscale approach for modeling actuation response of polymeric artificial muscles. Soft Matter 11(19), 3833–3843 (2015)

    Article  Google Scholar 

  208. Q. Yang, G. Li, A top-down multi-scale modeling for actuation response of polymeric artificial muscles. J. Mech. Phys. Solids 92, 237–259 (2016)

    Article  MathSciNet  Google Scholar 

  209. A. Abbas, J. Zhao, A physics based model for twisted and coiled actuator, in 2017 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2017)

    Google Scholar 

  210. M.C. Yip, G. Niemeyer, High-performance robotic muscles from conductive nylon sewing thread, in 2015 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2015)

    Google Scholar 

  211. K.H. Cho et al., A robotic finger driven by twisted and coiled polymer actuator, in Electroactive Polymer Actuators and Devices (EAPAD) 2016, (International Society for Optics and Photonics, 2016)

    Google Scholar 

  212. S.H. Kim et al., Harvesting temperature fluctuations as electrical energy using torsional and tensile polymer muscles. Energ. Environ. Sci. 8(11), 3336–3344 (2015)

    Article  Google Scholar 

  213. R. Wang et al., Torsional refrigeration by twisted, coiled, and supercoiled fibers. Science 366(6462), 216–221 (2019)

    Article  Google Scholar 

  214. M. Kanik et al., Strain-programmable fiber-based artificial muscle. Science 365(6449), 145–150 (2019)

    Article  Google Scholar 

  215. X. Zhao, Y. Kim, Soft microbots programmed by nanomagnets. Nature 575(7781), 58–59 (2019)

    Article  Google Scholar 

  216. R.M. Erb et al., Actuating soft matter with magnetic torque. Adv. Funct. Mater. 26(22), 3859–3880 (2016)

    Article  Google Scholar 

  217. J.M. Ginder et al., Magnetorheological elastomers: properties and applications, in Smart Structures and Materials 1999: Smart Materials Technologies, (International Society for Optics and Photonics, 1999)

    Google Scholar 

  218. J.-P. Pelteret, P. Steinmann, Magneto-Active Polymers: Fabrication, characterisation, modelling and simulation at the micro-and macro-scale (Walter de Gruyter GmbH & Co KG, 2019)

    Google Scholar 

  219. G. Stepanov et al., Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers. J. Phys. Condens. Matter 20(20), 204121 (2008)

    Article  Google Scholar 

  220. S. Ahmed et al., Multi-field responsive origami structures: Preliminary modeling and experiments, in ASME 2013 international design engineering technical conferences and computers and information in engineering conference, (American Society of Mechanical Engineers Digital Collection, 2013)

    Google Scholar 

  221. W. Hu et al., Small-scale soft-bodied robot with multimodal locomotion. Nature 554(7690), 81–85 (2018)

    Article  Google Scholar 

  222. Y. Kim et al., Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558(7709), 274–279 (2018)

    Article  Google Scholar 

  223. Z. Ren et al., Multi-functional soft-bodied jellyfish-like swimming. Nat. Commun. 10(1), 1–12 (2019)

    Article  Google Scholar 

  224. D. Kokkinis, M. Schaffner, A.R. Studart, Multimaterial magnetically assisted 3D printing of composite materials. Nat. Commun. 6(1), 1–10 (2015)

    Article  Google Scholar 

  225. W.F. Brown, Magnetoelastic interactions, vol 9 (Springer, 1966)

    Google Scholar 

  226. L. Liu, An energy formulation of continuum magneto-electro-elasticity with applications. J. Mech. Phys. Solids 63, 451–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  227. R. Zhao et al., Mechanics of hard-magnetic soft materials. J. Mech. Phys. Solids 124, 244–263 (2019)

    Article  MathSciNet  Google Scholar 

  228. P. Garstecki et al., Propulsion of flexible polymer structures in a rotating magnetic field. J. Phys. Condens. Matter 21(20), 204110 (2009)

    Article  Google Scholar 

  229. Q. Ze et al., Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv. Mater. 32(4), 1906657 (2020)

    Article  Google Scholar 

  230. S. Martel, Beyond imaging: Macro-and microscale medical robots actuated by clinical MRI scanners. Sci Robot 2(3), eaam8119 (2017)

    Article  Google Scholar 

  231. Y. Kim et al., Ferromagnetic soft continuum robots. Sci Robot 4(33), eaax7329 (2019)

    Article  Google Scholar 

  232. A.D. Marchese, C.D. Onal, D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics 1(1), 75–87 (2014)

    Article  Google Scholar 

  233. J. Najem et al., Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators. Smart Mater. Struct. 21(9), 094026 (2012)

    Article  Google Scholar 

  234. T. Chen et al., Harnessing bistability for directional propulsion of soft, untethered robots. Proc. Natl. Acad. Sci. 115(22), 5698–5702 (2018)

    Article  Google Scholar 

  235. D. Han et al., Soft robotic manipulation and locomotion with a 3d printed electroactive hydrogel. ACS Appl. Mater. Interfaces 10(21), 17512–17518 (2018)

    Article  Google Scholar 

  236. Q. He, Y. Zheng, Z. Wang, et al. Anomalous Inflation of a Nematic Balloon[J]. J. Mech. Phys. Solids, 104013 (2020)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge support from ONR Grant No. N00014-17-1-2062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., He, Q., Cai, S. (2021). Artificial Muscles for Underwater Soft Robotic System. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_4

Download citation

Publish with us

Policies and ethics