Skip to main content

Distributed Control of a Planar Discrete Elastic Rod for Eel-Inspired Underwater Locomotion

  • Chapter
  • First Online:
Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems

Abstract

Many organisms achieve locomotion through undulatory traveling-wave motions, both on land (e.g., snakes, caterpillars, and worms) and underwater (e.g., eels and flagellar single-celled organisms). Recently, caterpillar locomotion has been modeled using the theory of planar discrete elastic rods (PDER) and open-loop control. This work considers a planar discrete elastic rod model with closed-loop control over the intrinsic material parameters of length and curvature distributed along its length. We introduce local curvature feedback control laws to drive the shape of the robot to a desired traveling-wave reference trajectory, where the phase of the wave is determined via a central pattern generator or via distributed control with a circulant communication topology. Through numerical simulations utilizing simple models of fluid–body interaction forces we examine undulatory eel-like swimming gaits that give rise to net forward motion. These results show promise for the design of distributed feedback control laws in modular soft robotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, E. Grinspun, Discrete elastic rods. ACM Trans. Graph. 27(3), 63 (2008). https://doi.org/10.1145/1360612.1360662

  2. F. Boyer, M. Porez, W. Khalil, Macro-continuous computed torque algorithm for a three-dimensional eel-like robot. IEEE Trans. Robot. 22(4), 763–775 (2006). https://doi.org/10.1109/TRO.2006.875492

    Article  Google Scholar 

  3. C. Christianson, N.N. Goldberg, D.D. Deheyn, S. Cai, M.T. Tolley, Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 3(17), eaat1893 (2018). https://doi.org/10.1126/scirobotics.aat1893

  4. H. Feng, Y. Sun, P.A. Todd, H.P. Lee, Body wave generation for anguilliform locomotion using a fiber-reinforced soft fluidic elastomer actuator array toward the development of the eel-inspired underwater soft robot. Soft Robot. 7(2), 233–250 (2020). https://doi.org/10.1089/soro.2019.0054

    Article  Google Scholar 

  5. K.C. Galloway, K.P. Becker, B. Phillips, J. Kirby, S. Licht, D. Tchernov, R.J. Wood, D.F. Gruber, Soft robotic grippers for biological sampling on deep reefs. Soft Robot. 3(1), 23–33 (2016). https://doi.org/10.1089/soro.2015.0019

    Article  Google Scholar 

  6. G.B. Gillis, Undulatory locomotion in elongate aquatic vertebrates: anguilliform swimming since Sir James Gray. Am. Zool. 36(6), 656–665 (1996). https://doi.org/10.1093/icb/36.6.656

    Article  Google Scholar 

  7. N.N. Goldberg, X. Huang, C. Majidi, A. Novelia, O.M. O’Reilly, D.A. Paley, W.L. Scott, On planar discrete elastic rod models for the locomotion of soft robots. Soft Robot. 6(5), 595–610 (2019). https://doi.org/10.1089/soro.2018.0104

    Article  Google Scholar 

  8. J. Gray, Studies in animal locomotion: I. the movement of fish with special reference to the eel. J. Exp. Biol. 10(1), 88–104 (1933). https://jeb.biologists.org/content/10/1/88

  9. S. Hirose, Biologically-Inspired Robots: Snake-Like Locomotors and Manipulators (Oxford University Press, Oxford, 1993)

    Google Scholar 

  10. M.K. Jawed, A. Novelia, O.M. O’Reilly, A Primer on the Kinematics of Discrete Elastic Rods (Springer, Berlin, 2018)

    Book  Google Scholar 

  11. E. Kelasidi, K.Y. Pettersen, J.T. Gravdahl, P. Liljebäck, Modeling of underwater snake robots, in IEEE International Conference on Robotics and Automation (ICRA) (2014), pp. 4540–4547. https://doi.org/10.1109/ICRA.2014.6907522

  12. E. Kelasidi, P. Liljebäck, K.Y. Pettersen, J.T. Gravdahl, Experimental investigation of efficient locomotion of underwater snake robots for lateral undulation and eel-like motion patterns. Robot. Biomimetics 2(1), 8 (2015). https://doi.org/10.1186/s40638-015-0029-4

  13. E. Kelasidi, P. Liljebäck, K.Y. Pettersen, J.T. Gravdahl, Integral line-of-sight guidance for path following control of underwater snake robots: theory and experiments. IEEE Trans. Robot. 33(3), 610–628 (2017). https://doi.org/10.1109/TRO.2017.2651119

    Article  Google Scholar 

  14. C. McCaffrey, T. Umedachi, W. Jiang, T. Sasatani, Y. Narusue, R. Niiyama, Y. Kawahara, Continuum robotic caterpillar with wirelessly powered shape memory alloy actuators. Soft Robot. (2020, Available online ahead of print). https://doi.org/10.1089/soro.2019.0090

  15. K.A. McIsaac, J.P. Ostrowski, Motion planning for anguilliform locomotion. IEEE Trans. Robot. Autom. 19(4), 637–652 (2003). https://doi.org/10.1109/TRA.2003.814495

    Article  Google Scholar 

  16. J. Morison, J. Johnson, S. Schaaf, et al., The force exerted by surface waves on piles. J. Pet. Technol. 2(05), 149–154 (1950). https://doi.org/10.2118/950149-G

    Article  Google Scholar 

  17. B. Mosadegh, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whitesides, Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014). https://doi.org/10.1002/adfm.201303288

    Article  Google Scholar 

  18. M. Sato, M. Fukaya, T. Iwasaki, Serpentine locomotion with robotic snakes. IEEE Contr. Syst. Mag. 22(1), 64–81 (2002). https://doi.org/10.1109/37.980248

    Article  Google Scholar 

  19. P.E. Schiebel, J.M. Rieser, A.M. Hubbard, L. Chen, D.Z. Rocklin, D.I. Goldman, Mechanical diffraction reveals the role of passive dynamics in a slithering snake. Proc. Natl. Acad. Sci. 116(11), 4798–4803 (2019). https://doi.org/10.1073/pnas.1808675116

    Article  Google Scholar 

  20. Z. Wang, K. Li, Q. He, S. Cai, A light-powered ultralight tensegrity robot with high deformability and load capacity. Adv. Mater. 31(7), 1806849 (2019). https://doi.org/10.1002/adma.201806849

  21. M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M. Whitesides, J.A. Lewis, R.J. Wood, An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature 536(7617), 451–455 (2016). https://doi.org/10.1038/nature19100

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported in part by ONR Grant No. N000141712063.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William L. Scott or Derek A. Paley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scott, W.L., Prakash, P.J., Paley, D.A. (2021). Distributed Control of a Planar Discrete Elastic Rod for Eel-Inspired Underwater Locomotion. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_14

Download citation

Publish with us

Policies and ethics