Skip to main content

Abstract

Despite recent advances in the field of soft robotics, localized actuation, sensing, and control remain inadequately addressed. While soft robots offer advantages in adaptable configurations and deformation, they still lack precision, speed, and output force. The octopus is an exemplary model for the design of soft robots, offering solutions to such obstacles, with its powerful and agile arms and dexterous, highly precise suckers. Octopus arms are muscular hydrostats, achieving movements through the conservation of volume, yet the forces they can exert through their arms and suckers are impressive. The knowledge obtained about the sensing, actuation, and control mechanisms of octopus arms and suckers will greatly assist in implementing the distributed control of soft robot arms. This review highlights the key structure–function relationships of octopus arms and suckers, and how they have inspired the field of soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Accogli, G. Scillitani, D. Mentino, S. Desantis, Characterization of the skin mucus in the common octopus Octopus vulgaris (Cuvier) reared paralarvae. Eur. J. Histochem. 61(3) 2518, (2017)

    Google Scholar 

  2. I.A. Anderson, T.A. Gisby, T.G. McKay, B.M. O’Brien, E.P. Calius, Multi-functional dielectric elastomer artificial muscles for soft and smart machines. J. Appl. Phys. 112(4), 041101 (2012)

    Google Scholar 

  3. H. Bagheri, A. Hu, S. Cummings, C. Roy, R. Casleton, A. Wan, N. Erjavic, S. Berman, M.M. Peet, D.M. Aukes, X. He, S.C. Pratt, R.E. Fisher, H. Marvi, New insights on the control and function of octopus suckers. Adv. Intel. Syst. 2, 1900154 (2020)

    Article  Google Scholar 

  4. S. Baik, D.W. Kim, Y. Park, T.-J. Lee, S.H. Bhang, C. Pang, A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 546(7658), 396–400 (2017)

    Article  Google Scholar 

  5. S. Baik, J. Kim, H.J. Lee, T.H. Lee, C. Pang, Highly adaptable and biocompatible octopus-like adhesive patches with meniscus-controlled unfoldable 3d microtips for underwater surface and hairy skin. Adv. Sci. 5(8), 1800100 (2018)

    Google Scholar 

  6. S. Baik, H.J. Lee, D.W. Kim, J.W. Kim, Y. Lee, C. Pang, Bioinspired adhesive architectures: from skin patch to integrated bioelectronics. Adv. Mat. 31, 1803309 (2019)

    Article  Google Scholar 

  7. M.D. Bartlett, N. Kazem, M.J. Powell-Palm, X. Huang, W. Sun, J.A. Malen, C. Majidi, High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. 114, 201616377 (2017)

    Article  Google Scholar 

  8. H. Bing-Shan, W. Li-Wen, F. Zhuang, Z. Yan-zheng, Bio-inspired miniature suction cups actuated by shape memory alloy. Int. J. Adv. Robot. Syst. 6(3), 29 (2009)

    Google Scholar 

  9. Q. Bone, E.R. Brown, M. Usher, The structure and physiology of cephalopodss muscle fibers, in Cephalopod Neurobiology: Neuroscience Studies in Squid, Octopus and Cuttlefish, ed. by N.J. Abbot, R. Williamson, L. Maddock (Oxford University Press, Oxford, 1995)

    Google Scholar 

  10. P.R. Boyle, Neural control of cephalopod behavior, in The Mollusca (Elsevier, Amsterdam, 1986), pp. 1–99

    Google Scholar 

  11. B.U. Budelmann, The cephalopod nervous system: What evolution has made of the molluscan design, in The Nervous Systems of Invertebrates: An Evolutionary and Comparative Approach (Springer, Berlin, 1995), pp. 115–138

    Book  Google Scholar 

  12. R.A. Byrne, M.J. Kuba, D.V. Meisel, Lateralized eye use in Octopus vulgaris shows antisymmetrical distribution. Anim. Behav. 68(5), 1107–1114 (2004)

    Article  Google Scholar 

  13. R.A. Byrne, M.J. Kuba, D.V. Meisel, U. Griebel, J.A. Mather, Does Octopus vulgaris have preferred arms? J. Comp. Psychol. 120(3), 198 (2006)

    Google Scholar 

  14. M. Calisti, A. Arienti, M.E. Giannaccini, M. Follador, M. Giorelli, M. Cianchetti, B. Mazzolai, C. Laschi, P. Dario, Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform, in 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (2010), pp. 461–466

    Google Scholar 

  15. M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, P. Dario, An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6(3), 036002 (2011)

    Google Scholar 

  16. M. Calisti, F. Corucci, A. Arienti, C. Laschi, Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Bioinspir. Biomim. 10(4), 046012 (2015)

    Google Scholar 

  17. M.K. Choi, O.K. Park, C. Choi, S. Qiao, R. Ghaffari, J. Kim, D.J. Lee, M. Kim, W. Hyun, S.J. Kim, H.J. Hwang, S.-H. Kwon, T. Hyeon, N. Lu, D.-H. Kim, Cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Healthc. Mater. 5(1), 80–87 (2016)

    Article  Google Scholar 

  18. M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, C. Laschi, Design concept and validation of a robotic arm inspired by the octopus. Mater. Sci. Eng. C 31(6), 1230–1239 (2011)

    Article  Google Scholar 

  19. M. Cianchetti, M. Follador, B. Mazzolai, P. Dario, C. Laschi, Design and development of a soft robotic octopus arm exploiting embodied intelligence, in IEEE International Conference on Robotics and Automation (2012), pp. 5271–5276

    Google Scholar 

  20. M. Cianchetti, M. Calisti, L. Margheri, M. Kuba, C. Laschi, Bioinspired locomotion and grasping in water: the soft eight-arm octopus robot. Bioinspir. Biomim. 10(3), 035003 (2015)

    Google Scholar 

  21. A. Crespi, A.J. Ijspeert, Online optimization of swimming and crawling in an amphibious snake robot. IEEE Trans. Robot. 24(1), 75–87 (2008)

    Article  Google Scholar 

  22. T. Deng, H. Wang, W. Chen, X. Wang, R. Pfeifer, Development of a new cable-driven soft robot for cardiac ablation, in IEEE International Conference on Robotics and Biomimetics (ROBIO) (2013), pp. 728–733

    Google Scholar 

  23. T. Doi, S. Wakimoto, K. Suzumori, K. Mori, Proposal of flexible robotic arm with thin McKibben actuators mimicking octopus arm structure, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016), pp. 5503–5508

    Google Scholar 

  24. J.K. Finn, T. Tregenza, M.D. Norman, Defensive tool use in a coconut-carrying octopus. Curr. Biol. 19(23), R1069–R1070 (2009)

    Article  Google Scholar 

  25. G. Fiorito, C. von Planta, P. Scotto, Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behav. Neural Biol. 53(2), 217–230 (1990)

    Article  Google Scholar 

  26. G. Fiorito, G.B. Biederman, V.A. Davey, F. Gherardi, The role of stimulus preexposure in problem solving by Octopus vulgaris. Anim. Cogn. 1(2), 107–112 (1998)

    Google Scholar 

  27. M. Follador, M. Cianchetti, C. Laschi, Development of the functional unit of a completely soft octopus-like robotic arm, in 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) (2012), pp. 640–645

    Google Scholar 

  28. M. Follador, F. Tramacere, B. Mazzolai, Dielectric elastomer actuators for octopus inspired suction cups. Bioinspir. Biomim. 9(4), 046002 (2014)

    Google Scholar 

  29. J. Fras, M. Macias, Y. Noh, K. Althoefer, Fluidical bending actuator designed for soft octopus robot tentacle, in IEEE International Conference on Soft Robotics (RoboSoft) (2018), pp. 253–257

    Google Scholar 

  30. J. Fras, Y. Noh, M. Macias, H. Wurdemann, K. Althoefer, Bio-inspired octopus robot based on novel soft fluidic actuator, in IEEE International Conference on Robotics and Automation (ICRA) (2018), pp. 1583–1588

    Google Scholar 

  31. Z. Gong, Z. Xie, X. Yang, T. Wang, L. Wen, Design, fabrication and kinematic modeling of a 3d-motion soft robotic arm, in IEEE International Conference on Robotics and Biomimetics (ROBIO) (2016), pp. 509–514

    Google Scholar 

  32. P. Graziadei, Muscle receptors in cephalopods. Proc. R. Soc. London, Ser. B Biol. Sci. 161(984), 392–402 (1965)

    Google Scholar 

  33. P.P.C. Graziadei, H.T. Gagne, Sensory innervation in the rim of the octopus sucker. J. Morphol. 150(3), 639–679 (1976)

    Article  Google Scholar 

  34. G.-Y. Gu, J. Zhu, L.-M. Zhu, X. Zhu, A survey on dielectric elastomer actuators for soft robots. Bioinspir. Biomim. 12(1), 011003 (2017)

    Google Scholar 

  35. E. Guglielmino, I. Godage, L. Zullo, D.G. Caldwell, A pragmatic bio-inspired approach to the design of octopus-inspired arms, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2013), pp. 4577–4582

    Google Scholar 

  36. T. Horvat, K. Karakasiliotis, K. Melo, L. Fleury, R. Thandiackal, A.J. Ijspeert, Inverse kinematics and reflex based controller for body-limb coordination of a salamander-like robot walking on uneven terrain, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015), pp. 195–201

    Google Scholar 

  37. B. Hu, Z. Dong, Z. Fu, Y. Zhao, A shape memory alloy actuated miniature bio-inspired multi-cavity negative pressure suction cup, in Earth & Space 2008: Engineering, Science, Construction, and Operations in Challenging Environments (2008), pp. 1–8

    Google Scholar 

  38. C.L. Huffard, Locomotion by Abdopus aculeatus (Cephalopoda: Octopodidae): walking the line between primary and secondary defenses. J. Exp. Biol. 209(19), 3697–3707 (2006)

    Article  Google Scholar 

  39. C.L. Huffard, F. Boneka, R.J. Full, Underwater bipedal locomotion by octopuses in disguise. Science 307(5717), 1927–1927 (2005)

    Article  Google Scholar 

  40. L.M. Hvorecny, J.L. Grudowski, C.J. Blakeslee, T.L. Simmons, P.R. Roy, J.A. Brooks, R.M. Hanner, M.E. Beigel, M.A. Karson, R.H. Nichols, J.B. HolmJean, G. Boal, Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Anim. Cogn. 10(4), 449–459 (2007)

    Google Scholar 

  41. F. Ilievski, A.D. Mazzeo, R.F. Shepherd, X. Chen, G.M. Whitesides, Soft robotics for chemists. Angew. Chem. 123(8), 1930–1935 (2011)

    Article  Google Scholar 

  42. Z. Jing, L. Qiao, H. Pan, Y. Yang, W. Chen, An overview of the configuration and manipulation of soft robotics for on-orbit servicing. Sci. China Inform. Sci. 60(5), 050201 (2017)

    Google Scholar 

  43. S. Johnsen, E.J. Balser, E.A. Widder, Light-emitting suckers in an octopus. Nature 398(6723), 113 (1999)

    Google Scholar 

  44. W.M. Kier, The arrangement and function of molluscan muscle. Mollusca Form Funct. 11(21), 211–252 (1988)

    Article  Google Scholar 

  45. W.M. Kier, The musculature of coleoid cephalopod arms and tentacles. Front. Cell Dev. Biol. 4, 10 (2016)

    Article  Google Scholar 

  46. W.M. Kier, A.M. Smith, The morphology and mechanics of octopus suckers. Biol. Bul. 178(2), 126–136 (1990)

    Article  Google Scholar 

  47. W.M Kier, A.M. Smith, The structure and adhesive mechanism of octopus suckers. Integr. Comp. Biol. 42(6), 1146–1153 (2002)

    Google Scholar 

  48. W.M. Kier, K.K. Smith, Tongues, tentacles and trunks: the biomechanics of movement in muscular-hydrostats. Zool. J. Linnean Soc. 83(4), 307–324 (1985)

    Article  Google Scholar 

  49. S. Kim, C. Laschi, B. Trimmer, Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31(5), 287–294 (2013)

    Article  Google Scholar 

  50. S.Y. Kim, R. Baines, J. Booth, N. Vasios, K. Bertoldi, R. Kramer-Bottiglio, Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nat. Commun. 10(1), 1–8 (2019)

    Google Scholar 

  51. J.-S. Koh, D.-Y. Lee, S.-W. Kim, K.-J. Cho, Deformable soft wheel robot using hybrid actuation, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2012), pp. 3869–3870

    Google Scholar 

  52. I.M. Koo, K. Jung, J.C. Koo, J.-D. Nam, Y.K. Lee, H.R. Choi, Development of soft-actuator-based wearable tactile display. IEEE Trans. Robot. 24(3), 549–558 (2008)

    Article  Google Scholar 

  53. M. Kuba, D.V. Meisel, R.A. Byrne, U. Griebel, J.A. Mather, Looking at play in Octopus vulgaris. Berl. Paläont. Abh. 3,163–169 (2003)

    Google Scholar 

  54. C. Laschi, B. Mazzolai, V. Mattoli, M. Cianchetti, P. Dario, Design of a biomimetic robotic octopus arm. Bioinspir. Biomim. 4(1), 015006 (2009)

    Google Scholar 

  55. C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, P. Dario, Soft robot arm inspired by the octopus. Adv. Robot. 26(7), 709–727 (2012)

    Article  Google Scholar 

  56. H. Lee, D.-S. Um, Y. Lee, S. Lim, H.-J. Kim, H. Ko, Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mat. 28(34), 7457–7465 (2016)

    Article  Google Scholar 

  57. G. Levy, B. Hochner, Embodied organization of Octopus vulgaris morphology, vision, and locomotion. Front. Physiol. 8, 164 (2017)

    Article  Google Scholar 

  58. G. Levy, T. Flash, B. Hochner, Arm coordination in octopus crawling involves unique motor control strategies. Current Biol. 25(9), 1195–1200 (2015)

    Article  Google Scholar 

  59. J. Mann, E.M. Patterson, Tool use by aquatic animals. Philos. Trans. R. Soc. B Biol. Sci. 368(1630), 20120424 (2013)

    Google Scholar 

  60. R.V. Martinez, J.L. Branch, C.R. Fish, L. Jin, R.F. Shepherd, R.M.D. Nunes, Z. Suo, G.M. Whitesides, Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mat. 25(2), 205–212 (2013)

    Article  Google Scholar 

  61. J.A. Mather, How do octopuses use their arms? J. Com. Psychol. 112(3), 306 (1998)

    Google Scholar 

  62. J.A. Mather, M.J. Kuba, The cephalopod specialties: complex nervous system, learning, and cognition. Can. J. Zool. 91(6), 431–449 (2013)

    Article  Google Scholar 

  63. B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, C. Laschi, Soft-robotic arm inspired by the octopus: Ii. from artificial requirements to innovative technological solutions. Bioinsp. Biomim. 7(2), 025005 (2012)

    Google Scholar 

  64. B. Mazzolai, A. Mondini, F. Tramacere, G. Riccomi, A. Sadeghi, G. Giordano, E.D. Dottore, M. Scaccia, M. Zampato, S. Carminati, Octopus-inspired soft arm with suction cups for enhanced grasping tasks in confined environments. Adv. Intel. Syst. 1, 1900041 (2019)

    Article  Google Scholar 

  65. W. McMahan, I.D. Walker, Octopus-inspired grasp-synergies for continuum manipulators, in IEEE International Conference on Robotics and Biomimetics (2009), pp. 945–950

    Google Scholar 

  66. W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I.D. Walker, B.A. Jones, M. Pritts, D. Dienno, M. Grissom, C.D. Rahn, Field trials and testing of the OctArm continuum manipulator, in Proceedings IEEE International Conference on Robotics and Automation (ICRA) (2006), pp. 2336–2341

    Google Scholar 

  67. T. Moriyama, Y.-P. Gunji, Autonomous learning in maze solution by octopus. Ethology 103(6), 499–513 (1997)

    Article  Google Scholar 

  68. N. Nesher, G. Levy, F.W. Grasso, B. Hochner, Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other. Current Biol. 24(11), 1271–1275 (2014)

    Article  Google Scholar 

  69. A. Packard, Sucker display of octopus. Nature 190(4777), 736 (1961)

    Google Scholar 

  70. Q. Pei, M. Rosenthal, S. Stanford, H. Prahlad, R. Pelrine, Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mat. Struct. 13(5), N86 (2004)

    Google Scholar 

  71. R. Pfeifer, H.G. Marques, F. Iida, Soft robotics: The next generation of intelligent machines, in Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence (AAAI Press, Hilversum, 2013), pp. 5–11

    Google Scholar 

  72. P. Polygerinos, N. Correll, S.A. Morin, B. Mosadegh, C.D. Onal, K. Petersen, M. Cianchetti, M.T. Tolley, R.F. Shepherd, Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mat. 19(12), 1700016 (2017)

    Google Scholar 

  73. F. Renda, M. Giorelli, M. Calisti, M. Cianchetti, C. Laschi, Dynamic model of a multibending soft robot arm driven by cables. IEEE Trans. Robot. 30(5), 1109–1122 (2014)

    Article  Google Scholar 

  74. J.N. Richter, B. Hochner, M.J. Kuba, Pull or push? octopuses solve a puzzle problem. PloS one 11(3), e0152048 (2016)

    Google Scholar 

  75. H. Rodrigue, W. Wang, D.-R. Kim, S.-H. Ahn, Curved shape memory alloy-based soft actuators and application to soft gripper. Comp. Struct. 176, 398–406 (2017)

    Article  Google Scholar 

  76. C.H.F. Rowell, Activity of interneurones in the arm of octopus in response to tactile stimulation. J. Exp. Biol. 44(3), 589–605 (1966)

    Article  Google Scholar 

  77. D. Rus, M.T. Tolley, Design, fabrication and control of soft robots. Nature 521(7553), 467 (2015)

    Google Scholar 

  78. A. Sadeghi, A. Mondini, E.D. Dottore, A.K. Mishra, B. Mazzolai, Soft legged wheel-based robot with terrestrial locomotion abilities. Front. Robot. AI 3, 73 (2016)

    Article  Google Scholar 

  79. S. Sareh, K. Althoefer, M. Li, Y. Noh, F. Tramacere, P. Sareh, B. Mazzolai, M. Kovac, Anchoring like octopus: biologically inspired soft artificial sucker. J. R. Soc. Interface 14(135), 20170395 (2017)

    Google Scholar 

  80. M. Sfakiotakis, A. Kazakidi, A. Chatzidaki, T. Evdaimon, D.P. Tsakiris, Multi-arm robotic swimming with octopus-inspired compliant web, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2014), pp. 302–308

    Google Scholar 

  81. M. Sfakiotakis, A. Kazakidi, D.P. Tsakiris, Octopus-inspired multi-arm robotic swimming. Bioinspir. Biomim. 10(3), 035005 (2015)

    Google Scholar 

  82. N. Sholl, A. Moss, W.M. Kier, K. Mohseni, A soft end effector inspired by cephalopod suckers and augmented by a dielectric elastomer actuator. Soft Robot. 6, 356–367 (2019)

    Article  Google Scholar 

  83. P.K. Singh, C.M. Krishna, Continuum arm robotic manipulator: a review. Univers. J. Mech. Eng. 2(6), 193–198 (2014)

    Article  Google Scholar 

  84. G. Sumbre, Y. Gutfreund, G. Fiorito, T. Flash, B. Hochner, Control of octopus arm extension by a peripheral motor program. Science 293(5536), 1845–1848 (2001)

    Article  Google Scholar 

  85. G. Sumbre, G. Fiorito, T. Flash, B. Hochner, Octopuses use a human-like strategy to control precise point-to-point arm movements. Current Biol. 16(8), 767–772 (2006)

    Article  Google Scholar 

  86. T. Takahashi, M. Suzuki, S. Aoyagi, Octopus bioinspired vacuum gripper with micro bumps, in IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2016), pp. 508–511

    Google Scholar 

  87. T. Tomokazu, S. Kikuchi, M. Suzuki, S. Aoyagi, Vacuum gripper imitated octopus sucker-effect of liquid membrane for absorption, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2015), pp. 2929–2936

    Google Scholar 

  88. F. Tramacere, L. Beccai, F. Mattioli, E. Sinibaldi, B. Mazzolai, Artificial adhesion mechanisms inspired by octopus suckers, in IEEE International Conference on Robotics and Automation (2012), pp. 3846–3851

    Google Scholar 

  89. F. Tramacere, L. Beccai, M. Kuba, A. Gozzi, A. Bifone, B. Mazzolai, The morphology and adhesion mechanism of Octopus vulgaris suckers. PLoS One 8(6), e65074 (2013)

    Google Scholar 

  90. F. Tramacere, E. Appel, B. Mazzolai, S.N. Gorb, Hairy suckers: the surface microstructure and its possible functional significance in the octopus vulgaris sucker. Beilst. J. Nanotechnol. 5(1), 561–565 (2014)

    Article  Google Scholar 

  91. F. Tramacere, A. Kovalev, T. Kleinteich, S.N. Gorb, B. Mazzolai, Structure and mechanical properties of Octopus vulgaris suckers. J. R. Soc. Interface 11(91), 20130816 (2014)

    Google Scholar 

  92. F. Tramacere, M. Follador, N.M. Pugno, B. Mazzolai, Octopus-like suction cups: from natural to artificial solutions. Bioinspir. Biomim. 10(3), 035004 (2015)

    Google Scholar 

  93. R. Villanueva, A. Guerra, Food and prey detection in two deep-sea cephalopods: Opisthoteuthis agassizi and O. vossi (Octopoda: Cirrata). Bull. Mar. Sci. 49(1–2), 288–299 (1991)

    Google Scholar 

  94. I.D. Walker, D.M. Dawson, T. Flash, F.W. Grasso, R.T. Hanlon, B. Hochner, W.M. Kier, C.C. Pagano, C.D. Rahn, Q.M. Zhang, Continuum robot arms inspired by cephalopods, in Unmanned Ground Vehicle Technology VII, vol. 5804 (2005), pp. 303–314. International Society for Optics and Photonics

    Google Scholar 

  95. M.J. Wells, Tactile discrimination of shape by octopus. Q. J. Exp. Psychol. 16(2), 156–162 (1964)

    Article  Google Scholar 

  96. M.J. Wells, Tactile discrimination of surface curvature and shape by the octopus. J. Exp. Biol. 41(2), 433–445 (1964)

    Article  Google Scholar 

  97. J.J. Wilker, Materials science: how to suck like an octopus. Nature 546(7658), 358 (2017)

    Google Scholar 

  98. D.M. Wilson, Nervous control of movement in cephalopods. J. Exp. Biol. 37(1), 57–72 (1960)

    Article  MathSciNet  Google Scholar 

  99. J.Z. Young, The Anatomy of the Nervous System of Octopus Vulgaris (Clarendon Press, Oxford, 1971)

    Google Scholar 

  100. J. Yu, R. Ding, Q. Yang, M. Tan, W. Wang, J. Zhang, On a bio-inspired amphibious robot capable of multimodal motion. IEEE/ASME Trans. Mech. 17(5), 847–856 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Spring Berman or Hamidreza Marvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bagheri, H. et al. (2021). Control and Functionality of Octopus Arms and Suckers. In: Paley, D.A., Wereley, N.M. (eds) Bioinspired Sensing, Actuation, and Control in Underwater Soft Robotic Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-50476-2_10

Download citation

Publish with us

Policies and ethics