Skip to main content

Developments in AI and Machine Learning for Neuroimaging

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Abstract

This paper reviews guidelines on how medical imaging analysis can be enhanced by Artificial Intelligence (AI) and Machine Learning (ML). In addition to outlining current and potential future developments, we also provide background information on chemical imaging and discuss the advantages of Explainable AI. We hypothesize that it is a matter of AI to find an invariably recurring parameter that has escaped human attention (e.g. due to noisy data). There is great potential in AI to illuminate the feature space of successful models.

We thank the organization CNPQ (Brazilian National Council for Scientific and Technological Development). This entity provided support that was invaluable to our research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amoroso, N., et al.: Brain structural connectivity atrophy in Alzheimer’s disease. arXiv (2017)

    Google Scholar 

  2. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning - a new frontier in artificial intelligence research - research frontier. IEEE Comput. Intell. Mag. 5, 4 (2010). https://doi.org/10.1109/MCI.2010.938364

    Article  Google Scholar 

  3. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PloS one 10(7), e0130140 (2015)

    Article  Google Scholar 

  4. Bartelle, B.B., Barandov, A., Jasanoff, A.: Molecular fMRI. J. Neurosci. 36(15), 4139–4148 (2016)

    Article  Google Scholar 

  5. Baxt, W.G.: Use of an artificial neural network for the diagnosis of myocardial infarction. Ann. Intern. Med. 115, 11 (1991)

    Article  Google Scholar 

  6. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  7. Breiman, L.: Random forests. Mach. Learn. 45, 1 (2001). https://doi.org/10.1023/A:1010933404324

    Article  MATH  Google Scholar 

  8. Bult, C.J.: Mouse tumor biology (MTB): a database of mouse models for human cancer. Nucleic Acids Res. 43, D818–D824 (2014). https://doi.org/10.1093/nar/gku987

    Article  Google Scholar 

  9. Calhoun, V.D., Sui, J.: Multimodal fusion of brain imaging data: a key to finding the missing link(s) in complex mental illness. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 1(3), 230–244 (2016)

    Article  Google Scholar 

  10. Daffner, K.: Current approaches to the clinical diagnosis of Alzheimer’s disease. In: Scinto, L.F.M., Daffner, K.R. (eds.) Early Diagnosis of Alzheimer’s Disease. Current Clinical Neurology, pp. 29–64. Humana Press, Totowa (2000). https://doi.org/10.1007/978-1-59259-005-6_2

  11. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16, 10 (2000)

    Article  Google Scholar 

  12. Gardiner, S.L., van Belzen, M.J., Boogaard, M.W., et al.: Huntingtin gene repeat size variations affect risk of lifetime depression. Transl. Psychiatry 7, 1277 (2017). https://doi.org/10.1038/s41398-017-0042-1

    Article  Google Scholar 

  13. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. arXiv preprint arXiv:1806.00069 (2018)

  14. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  15. Greenspan, H., Van Ginneken, B., Summers, R.M.: Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans. Med. Imaging 35, 5 (2016)

    Article  Google Scholar 

  16. Gupta, A., Ayhan, M., Maida, A.: In natural image bases to represent neuroimaging data. In: International Conference on Machine Learning, pp. 987–994 (2013)

    Google Scholar 

  17. Hadzi, T.C., et al.: Assessment of cortical and striatal involvement in 523 Huntington disease brains. Neurology 79, 1708–1715 (2012)

    Article  Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  19. Heim, B., et al.: Magnetic resonance imaging for the diagnosis of Parkinson’s disease. J. Neural Transm. 124, 8 (2017)

    Article  Google Scholar 

  20. Holzinger, A.: Introduction to machine learning and knowledge extraction (make). Mach. Learn. Knowl. Extr. 1(1), 1–20 (2017)

    Article  Google Scholar 

  21. Holzinger, A., et al.: Machine learning and knowledge extraction in digital pathology needs an integrative approach. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 13–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_2

  22. Holzinger, A., Carrington, A., Müller, H.: Measuring the quality of explanations: The system causability scale (scs). Comparing human and machine explanations. KI - Künstliche Intelligenz (German J. Artif. Intell.). Special Issue on Interactive Machine Learning, Edited by Kristian Kersting, TU Darmstadt 34(2) (2020). https://doi.org/10.1007/s13218-020-00636-z

  23. Holzinger, A., Goebel, R., Palade, V., Ferri, M.: Towards integrative machine learning and knowledge extraction. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 1–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_1

  24. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

  25. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Mueller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 9(4), e1312 (2019). https://doi.org/10.1002/widm.1312

    Article  Google Scholar 

  26. Hyder, F., Rothman, D.: Advances in imaging brain metabolism. Ann. Rev. Biomed. Eng. 19, 485–515 (2017)

    Article  Google Scholar 

  27. Jeanquartier, F., et al.: Machine learning for in silico modeling of tumor growth. In: Holzinger, A. (ed.) Machine Learning for Health Informatics. LNCS (LNAI), vol. 9605, pp. 415–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50478-0_21

  28. Jeanquartier, F., Jean-Quartier, C., Schreck, T., Cemernek, D., Holzinger, A.: Integrating open data on cancer in support to tumor growth analysis. In: Renda, M.E., Bursa, M., Holzinger, A., Khuri, S. (eds.) ITBAM 2016. LNCS, vol. 9832, pp. 49–66. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43949-5_4

  29. Job, D.E., et al.: A brain imaging repository of normal structural MRI across the life course: brain images of normal subjects (brains). NeuroImage 144, 299–304 (2017)

    Article  Google Scholar 

  30. Klein, M., et al.: Brain imaging genetics in ADHD and beyond- mapping pathways from gene to disorder at different levels of complexity. Neurosci. Biobehav. Rev. 80, 115–155 (2017). https://doi.org/10.1016/j.neubiorev.2017.01.013

    Article  Google Scholar 

  31. Klöppel, S., Abdulkadir, A., Jack, C.R., Koutsouleris, N., Mourāo-Miranda, J., Vemuri, P.: Diagnostic neuroimaging across diseases. Neuroimage 61(2), 457–463 (2012)

    Article  Google Scholar 

  32. Lakkaraju, H., Kamar, E., Caruana, R., Leskovec, J.: Interpretable and explorable approximations of black box models. arXiv preprint arXiv:1707.01154 (2017)

  33. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 7553 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  34. Lee, T., Cai, L.X., Lelyveld, V.S., Hai, A., Jasanoff, A.: Molecular-level functional magnetic resonance imaging of dopaminergic signaling. Science 344(6183), 533–535 (2014)

    Article  Google Scholar 

  35. Lemm, S., Blankertz, B., Dickhaus, T., Mueller, K.R.: Introduction to machine learning for brain imaging. Neuroimage 10(1016), 387–399 (2011)

    Article  Google Scholar 

  36. Li, C., Sun, H., Liu, Z., Wang, M., Zheng, H., Wang, S.: Learning cross-modal deep representations for multi-modal MR image segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 57–65. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_7

  37. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  38. Margaritis, D.: Learning Bayesian network model structure from data. Ph.D. thesis, Carnegie-Mellon University Pittsburgh PA School Of Computer Science (2003)

    Google Scholar 

  39. Marques, J.P., et al.: Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2(*) and magnetic susceptibility. Neuroimage 147, 152 (2017)

    Article  Google Scholar 

  40. Martino, D., et al.: The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J. Neurol. Neurosurg. Psychiatry 84, 650–656 (2013)

    Article  Google Scholar 

  41. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  42. Mellon, E.A., Beesam, R.S., Elliott, M.A., Reddy, R.: Mapping of cerebral oxidative metabolism with MRI. Proc. Nat. Acad. Sci. 107(26), 11787–11792 (2010)

    Article  Google Scholar 

  43. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_10

  44. Mormina, E., et al.: Cerebellum and neurodegenerative diseases: beyond conventional magnetic resonance imaging. World J. Radiol. 9(10), 371–388 (2017). https://doi.org/10.4329/wjr.v9.i10.371

    Article  Google Scholar 

  45. Nasrallah, F.A.: Imaging brain deoxyglucose uptake and metabolism by glucoCEST MRI. J. Cereb. Blood Flow Metab. 33(8), 1270–1278 (2013)

    Article  Google Scholar 

  46. Ngen, E.J., Artemov, D.: Advances in monitoring cell-based therapies with magnetic resonance imaging: future perspectives. Int. J. Mol. Sci. 18, 1 (2017)

    Article  Google Scholar 

  47. Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y.: Multimodal deep learning. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 689–696 (2011)

    Google Scholar 

  48. Nopoulos, P.C., et al.: Cerebral cortex structure in prodromal Huntington disease. Neurobiol. Dis. 40, 544–554 (2010). https://doi.org/10.4322/acr.2018.003

  49. Ofori, E., Du, G., Babcock, D., Huang, X., Vaillancourt, D.E.: Parkinson’s disease biomarkers program brain imaging repository. Neuroimage 124, 1120–1124 (2016). https://doi.org/10.1186/s40708-019-0096-3

    Article  Google Scholar 

  50. O’Sullivan, S., Holzinger, A., Zatloukal, K., Saldiva, P., Sajid, M.I., Wichmann, D.: Machine learning enhanced virtual autopsy. Autops. Case Rep. 7(4), 3–7 (2017). https://doi.org/10.4322/acr.2017.037

    Article  Google Scholar 

  51. O’Sullivan, S., Holzinger, A., Wichmann, D., Saldiva, P., Sajid, M., Zatloukal, K.: Virtual autopsy: machine learning and artificial intelligence provide new opportunities for investigating minimal tumor burden and therapy resistance by cancer patients. Autops. Case Rep. 8, 1 (2018). https://doi.org/10.4322/acr.2018.003

    Article  Google Scholar 

  52. O’Sullivan, S., et al.: The role of artificial intelligence and machine learning in harmonization of high-resolution post-mortem MRI (virtopsy) with respect to brain microstructure. Brain Inform. 6(1), 3 (2019). https://doi.org/10.1186/s40708-019-0096-3

    Article  Google Scholar 

  53. Pathak, D., Krahenbuhl, P., Darrell, T.: Constrained convolutional neural networks for weakly supervised segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1796–1804 (2015)

    Google Scholar 

  54. Poldrack, R.A., Gorgolewski, K.J.: Making big data open: data sharing in neuroimaging. Nature Neurosci. 17(11), 1510–1517 (2014)

    Article  Google Scholar 

  55. Rajalingam, B., Priya, R.: Multimodal medical image fusion based on deep learning neural network for clinical treatment analysis. Int. J. Chem. Tech. Res. CODEN (USA) IJCRGG 11, 0974–4290 (2018). ISSN

    Google Scholar 

  56. Rajpurkar, P., et al.: Chexnet: radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

  57. Ramachandram, D., Taylor, G.W.: Deep multimodal learning: a survey on recent advances and trends. IEEE Signal Process. Mag. 34(6), 96–108 (2017)

    Article  Google Scholar 

  58. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you?: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144. ACM (2016)

    Google Scholar 

  59. Sawiak, S.J., Morton, A.J.: The cambridge MRI database for animal models of Huntington disease. NeuroImage 124, 1260–1262 (2016)

    Article  Google Scholar 

  60. Sertbas, M., Ulgen, K.O.: Unlocking human brain metabolism by genome-scale and multiomics metabolic models: relevance for neurology research, health, and disease. OMICS 22(7), 455–467 (2018)

    Article  Google Scholar 

  61. Sirinukunwattana, K., Raza, S.E.A., Tsang, Y.W., Snead, D.R., Cree, I.A., Rajpoot, N.M.: Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images. IEEE Trans. Med. Imaging 35, 5 (2016)

    Article  Google Scholar 

  62. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  63. Szolovits, P., Patil, R.S., Schwartz, W.B.: Artificial intelligence in medical diagnosis. Ann. Intern. Med. 108, 1 (1988)

    Article  Google Scholar 

  64. Tabrizi, S.J., et al.: Biological and clinical manifestations of Huntington’s disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet Neurol. 8(9), 791–801 (2009). https://doi.org/10.1016/S1474-4422(09)70170-X

    Article  Google Scholar 

  65. Thompson, P.M., et al.: The enigma consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8(2), 153–182 (2014)

    Article  Google Scholar 

  66. Wang, J., et al.: Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci. Rep. 6, 30618 (2016)

    Article  Google Scholar 

  67. Yaneske, E., Angione, C.: The poly-omics of ageing through individual-based metabolic modelling. BMC Bioinform. 19(14), 415 (2018)

    Article  Google Scholar 

  68. Yang, H., Rudin, C., Seltzer, M.: Scalable Bayesian rule lists. arXiv preprint arXiv:1602.08610 (2016)

  69. Zampieri, G., Vijayakumar, S., Yaneske, E., Angione, C.: Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput. Biol. 15(7), e1007084 (2019)

    Article  Google Scholar 

  70. Zhang, X., et al.: PET/MR imaging: new frontier in Alzheimer’s disease and other dementias. Front. Mol. Neurosci. 10, 343 (2017)

    Article  Google Scholar 

  71. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4, 100004 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shane O’Sullivan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Sullivan, S. et al. (2020). Developments in AI and Machine Learning for Neuroimaging. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics