Skip to main content

Efficient Parameter-Dependent Simulation of Infections in a Population Model

  • Chapter
  • First Online:
Mathematical Modelling in Real Life Problems

Part of the book series: Mathematics in Industry ((TECMI,volume 33))

  • 652 Accesses

Abstract

A large host population, living in a bounded and isolated habitat, is infected. Propagation of the disease is promoted by a time-periodic transmission rate between the organisms, which interact with one another, move within the habitat and possibly recover. Birth and death also affect the group. In this context, an epidemiological model is constructed to describe the dynamics of the population. In spite of its simplicity, such model necessarily depends on various parameters that regulate the organisms behavior. Hence, the analysis and numerical simulation of the population dynamics for many key scenarios, which is an important step to study and control the effects of the epidemic, may be somewhat computationally expensive. In order to decrease this effort, a high-order singular value decomposition is applied to data generated by the model for a limited number of parameter values, which provides few sets of modes accounting for the most relevant and uncorrelated features of the involved dynamics. Such modes are then used to approximate the population states for other, new values of the parameters in an efficient and reasonably accurate way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, R. M., May, R. M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1991)

    Google Scholar 

  2. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57, 483–531 (2015)

    Article  MathSciNet  Google Scholar 

  3. Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer-Verlag, New York (2001)

    Book  Google Scholar 

  4. Cebeci, T.: Convective Heat Transfer. Springer-Verlag, Berlin & Heidelberg (2002)

    Book  Google Scholar 

  5. Chowell, G., Sattenspiel, L., Bansal, S., Viboud, C.: Mathematical models to characterize early epidemic growth: a review. Phys. Life Rev. 18, 66–97 (2016)

    Article  Google Scholar 

  6. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. A. 21, 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  7. Funk, S., Salathé, M., Jansen, V. A. A.: Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247–1256 (2010)

    Article  Google Scholar 

  8. Keeling, M. J., Rohani, P., Grenfell, B. T.: Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317–335 (2001)

    Article  Google Scholar 

  9. Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927)

    Article  Google Scholar 

  10. Kreimer, N., Sacchi, M. D.: A tensor higher-order singular value decomposition for prestack seismic data noise reduction and interpolation. Geophysics 77, 113–122 (2012)

    Article  Google Scholar 

  11. Lorente, L. S., Vega, J. M., Velazquez, A.: Generation of aerodynamic databases using high-order singular value decomposition. J. Aircraft 45, 1779–1788 (2008)

    Article  Google Scholar 

  12. Lorente, L. S., Vega, J. M., Velazquez, A.: Compression of aerodynamic databases using high-order singular value decomposition. Aerosp. Sci. Technol. 14, 168–177 (2010)

    Article  Google Scholar 

  13. Lucia, D. J., Beran, P. S., Silva, W. A.: Reduced-order modeling: new approaches for computational physics. Prog. Aerosp. Sci. 40, 51–117 (2004)

    Article  Google Scholar 

  14. Moreno, A. I., Jarzabek, A. A., Perales, J. M., Vega, J. M.: Aerodynamic database reconstruction via gappy high order singular value decomposition. Aerosp. Sci. Technol. 52, 115–128 (2016)

    Article  Google Scholar 

  15. Murray, J. D.: Mathematical Biology. Springer-Verlag, New York (2002)

    Book  Google Scholar 

  16. Quarteroni, A., Rozza, G. (eds.): Reduced Order Methods for Modeling and Computational Reduction. Springer International Publishing (2014)

    Google Scholar 

  17. Rajwade, A., Rangarajan, A., Banerjee, A.: Image denoising using the higher order singular value decomposition. IEEE T. Pattern Anal. 35, 849–862 (2013)

    Article  Google Scholar 

  18. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis. Springer-Verlag, New York (2002)

    Book  Google Scholar 

  19. Tucker, L. R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31, 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  20. Uziel, A., Stone, L.: Determinants of periodicity in seasonally driven epidemics. J. Theor. Biol. 305, 88–95 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the students of his group at the ECMI Modelling Week 2013, held at Universidad Carlos III of Madrid on July 2013, for their contribution to this work. The latter has been supported by the Ministerio de Economía y Competitividad grant MTM2014-56948-C2-2-P and by the FEDER / Ministerio de Ciencia, Innovación y Universidades-Agencia Estatal de Investigación grant MTM2017-84446-C2-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Terragni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Terragni, F. (2020). Efficient Parameter-Dependent Simulation of Infections in a Population Model. In: Lindner, E., Micheletti, A., Nunes, C. (eds) Mathematical Modelling in Real Life Problems. Mathematics in Industry(), vol 33. Springer, Cham. https://doi.org/10.1007/978-3-030-50388-8_10

Download citation

Publish with us

Policies and ethics