Skip to main content

Basic Physical–Chemical Principles of Ancient Metallurgy

  • Chapter
  • First Online:
Archaeometallurgy – Materials Science Aspects

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

  • 752 Accesses

Abstract

In materials science, metallurgy, in geoscience, and in ceramic science it is an established procedure to express the composition of an assembly of different phases through a phase diagram. Phase diagrams are simplified chemical systems with known formation temperatures (high temperatures in metallurgy) of individual phases. They may be useful for understanding more complex phase relations in chemically complex melts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anguilano L (2012) Roman lead silver smelting at Rio Tinto: the case study of Corta Lago. PhD-diss, University College London

    Google Scholar 

  • Askeland DR (1996) Materialwissenschaften. Grundlagen Übungen Lösungen. Spektrum Akad Verlag

    Google Scholar 

  • Bachmann HG (1978) Schlacken: Indikatoren archäometallurgischer Prozesse. In: Hennicke HW (ed) Mineralische Rohstoffe als kulturhistorische Informationsquelle. Hagen, Verlag Deutscher Emailfachleute, pp 66–103

    Google Scholar 

  • Bachmann HG (1982b) The identification of slags from archaeological sites. Inst Archaeol, Univers London, Occ Pap 6

    Google Scholar 

  • Bourgarit D (2007) Chalcolithic copper smelting. In: La Niece S, Hook D, Craddock P (eds) Metals and mines. Stud in archaeometall. Brit Mus & Archetype Publ, London, pp 3–14

    Google Scholar 

  • Bowen NL, Schairer JF (1932) The system FeO-SiO2. Am J Sci 24:177–213

    Article  Google Scholar 

  • Bowen NL, Schairer JF (1935) The system MgO-FeO-SiO2. Am J Sci 229:151–217

    Article  Google Scholar 

  • Chakrabarti DJ, Laughlin DE (1984) The Cu-Pb (copper-lead) system. Bull Alloy Phase Diagr 5(5):503–510

    Article  Google Scholar 

  • Charles JA (1980) The coming of copper and copper-based alloys and iron: a metallurgical sequence. In: Wertime TA, Muhly JD (eds) The coming of the age of iron. Yale University Press, New Haven and London, pp 151–182

    Google Scholar 

  • Craddock PT (1995) Early metal mining and production. Edinburgh University Press 1995

    Google Scholar 

  • Craddock PT (2013a) Tarteso y la Explotatión Minera. Local traditions and foreign contacts: innovation in Tartessian metallurgy. In: Alvar J, Campos Carrasco JM (eds) Acta Congreso Tartesso. Editores Tarteso. El emporio del metal. Almuzara, Huelva, pp 231–268

    Google Scholar 

  • Craddock PT, Meeks N (1987) Iron in ancient copper. Archaeometry 29:187–204

    Article  Google Scholar 

  • Ellingham HTJ (1944) The physical chemistry of process metallurgy. J Soc Chem Ind 63:125

    Article  Google Scholar 

  • Eugster HP, Wones DR (1962) Stability relations of the ferruginous Biotite, Annite. J Petrol 3:82–125

    Article  Google Scholar 

  • Ganzelewski M (2000) Archäometallurgische Untersuchungen zur frühen Verhüttung von Raseneisenerzen am Kammberg bei Joldelund, Kreis Nordfriesland. In: Haffner A, Jöns H, Reichstein J (eds) Frühe Eisengewinnung in Joldelund, Kreis Nordfriesland. Ein Beitrag zur Siedlungs- und Technikgeschichte Schleswig-Holsteins, vol 59. Universitätsforsch Prähist Archäol, p 3

    Google Scholar 

  • Hansen M, Anderko K (1958) Constitution of binary alloys. McGraw-Hill, New York

    Book  Google Scholar 

  • Hauptmann A (1985) 5000 Jahre Kupfer in Oman 1: die Entwicklung der Kupfermetallurgie vom 3. Jahrtausend bis zur Neuzeit Der Anschnitt Beih 4

    Google Scholar 

  • Hauptmann A (2000) Reconstructing ancient smelting processes: Applied mineralogy in archaeometallurgy. In. DRammlmair, J Mederer, Th. Oberthür, RBHeimann, H Pentinghaus, Applied Mineralogy in Research, Economy, Technology,Ecology and Culture I. Balkema, Rotterdam: 29-3229 A.Hauptmann

    Google Scholar 

  • Hauptmann A (2007) The early metallurgy of copper. Evidence fom Faynan, Jordan. In: Wagner GA, Herrmann B (eds) Natural science in archaeology. Springer, Heidelberg

    Google Scholar 

  • Heimann R, Magetti M (2014) Ancient and historical ceramics. Materials, technology, art and culinary traditions. Schweizerbart Sc Publ, Stuttgart

    Google Scholar 

  • Hezarkhani Z, Keesmann I (1996) Archäometallurgische Untersuchungen an Kupferschlacken aus dem Zentraliran. Meta 3(2):101–125

    Google Scholar 

  • Hummel RE (1998) Understanding materials science – history properties applications. Springer, New York

    Book  Google Scholar 

  • Keesmann I (1989) Chemische und mineralogische Detailuntersuchungen zur interpretation eisenreicher Schlacken. In: Pleiner R (ed) Archaeometallurgy of Iron. Proc Symp Comité pour la siderurgie ancienne de l’UISPP. Liblice 1987, Prague, pp 17–34

    Google Scholar 

  • Kubaschewski O, Alcock CB (1979) Metallurgical thermochemistry, Intern Ser Materials Technology. Pergamon Press, Oxford

    Google Scholar 

  • Kronz A (1997) Phasenbeziehungen und Kristallisationsmechanismen in fayalitischen Schmelzsystemen – Untersuchungen an Eisen- und Buntmetallschlacken. PhD-diss Fakultät Geowiss, Mainz

    Google Scholar 

  • Kronz A, Keesmann I (2005) Fayalitische Schmelzsysteme – Ein Beitrag zur vorneuzeitlichen Eisen- und Buntmetalltechnologie im Dietzhölztal (Lahn -Dill – Gebiet, Hessen). In: Jockenhövel A, Willms C (eds) das Dietzhölzetal-Projekt. Archäometallurgische Untersuchungen zur geschichte und Struktur der mittelalterlichen Eisengewinnung im Lahn-Dill-Gebiet (Hessen), Münster Beitr ur- und frühgeschichtl Archäol, pp 403–499

    Google Scholar 

  • Lutz J (1990) Geochemische und mineralogische Aspekte der frühen Kupferverhüttung in Murgul/Nordost-Türkei. PhD-diss, Univers Heidelberg

    Google Scholar 

  • Markl G (2015a) Minerale und Gesteine. Mineralogie – Petrologie – Geochemie, 3rd edn. Springer Spektrum

    Google Scholar 

  • Markl G (2015b) Schwarzwald - Lagerstätten und Mineralien aus vier Jahrhunderten 1: Nordschwarzwald und Grube Clara. Bode, Salzhemmendorf

    Google Scholar 

  • Metten B (2003) Beitrag zur spätbronzezeitlichen Kupfermetallurgie im Trentino (Südalpen) im Vergleich mit anderen prähistorischen Kupferschlacken aus dem Alpenrau. Meta 10(1/2):1–122

    Google Scholar 

  • Muan A (1955) Phase Equilibria in the system FeO-Fe2O3-SiO2. J Miner Metals Mater Soc 7(9):965–976

    Article  Google Scholar 

  • Noll W, Heimann RB (2016) Ancient Old World pottery. Materials, technology, and decoration. Schweizerbart Sc Publ

    Google Scholar 

  • Osborn EF, Muan A (1964) In: phase equilibrium diagrams of oxide systems. Amer ceramic Soc and Orton E, jr., ceramic foundation, Columbus, Ohio; cf. also Levin/Robbins/McMurdie, phase diagrams for ceramists. Amer. Soc., Columbus, Ohio (1964), fig. 696 and 82

    Google Scholar 

  • Pleiner R (2000) Iron in archaeology: the European Bloomery smelters. Helvetica & Tempora, Praha

    Google Scholar 

  • Rehder JE (1989) Ancient carburization of Iron to steel. Archaeomaterials 3:27–37

    Google Scholar 

  • Rehder JE (2000) The mastery and uses of fire in antiquity. McGill-Queens University Press, Montreal

    Google Scholar 

  • Reitmaier-Naef L (2020) Vom Erz zum Metall. Die chaîne opératoire der prähistorischen Kupfergewinnung im Oberhalbstein Graubünden. Der Anschnitt Beih, in press

    Google Scholar 

  • Salmang H, Scholze H, Telle R (2007) Keramik. Springer, Berlin

    Google Scholar 

  • Silvestri E, Bellintani P, Hauptmann A (2019) Bronze age copper ore mining and smelting in Trentino (Italy). In: Turck R, Stöllner T, Goldenberg G (eds) Alpine copper II – Rame delle Alpi II – Cuivre des Alpes II. New results and perspectives on prehistoric copper production, Der Anschnitt Beih, vol 42, pp 261–277

    Google Scholar 

  • Slag Atlas des Vereins Deutscher Hüttenleute (1995)

    Google Scholar 

  • Straube H (1996) Ferrum Noricum und die Stadt auf dem Magdalensberg. Springer, Wien

    Book  Google Scholar 

  • Tylecote RF, Boydell PJ (1978) Experiments on copper smelting based upon early furnaces found at Timna. In: Rothenberg B (ed) Archaeometallurgy: chalcolithic copper smelting, Inst Archaeo-Metallurg stud Monogr 1, London, pp 27–49

    Google Scholar 

  • Wimmenauer W (1985) Petrographie der magmatischen und metamorphen Gesteine. Enke Publ, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hauptmann, A. (2020). Basic Physical–Chemical Principles of Ancient Metallurgy. In: Archaeometallurgy – Materials Science Aspects. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-030-50367-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50367-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50366-6

  • Online ISBN: 978-3-030-50367-3

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics