Skip to main content

Topological Fermion-Condensation Quantum Phase Transition

  • Chapter
  • First Online:
Strongly Correlated Fermi Systems

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 283))

  • 779 Accesses

Abstract

Here, we discuss the general properties of the topological fermion-condensation quantum phase transition (FCQPT) leading to the emergence of the fermion condensation (FC). Basing on the main results of Chap. 3, we continue to present a microscopic derivation of the main equations of FC and show that Fermi systems with FC form an entirely new class of Fermi liquids with its own topological structure, protecting the FC state. We construct the phase diagram, and explore the order parameter of these systems. We show that the fermion condensate has a strong impact on the observable physical properties of systems, where it is realized, up to relatively high temperatures of a few tens kelvin. Two different scenarios of the quantum-critical point (QCP), a zero-temperature instability of the Landau state, related to the divergence of the effective mass, are also briefly investigated. Flaws of the standard scenario of the QCP, where this divergence is attributed to the occurrence of some second-order phase transition, are demonstrated. We also consider other topological phase transitions, taking place in normal Fermi liquid. These are associated with the emergence of a multi-connected Fermi surface. Depending on the parameters and analytical properties of the Landau interaction, such instabilities lead to several possible types of restructuring of initial Fermi liquid ground state. This restructuring generates topologically distinct phases. One of them is the FC discussed above, and another one belongs to a class of topological transitions and will be called “iceberg” phase, where the sequence of rectangles (“icebergs”) \(n(p)=0\) and \(n(p)=1\) is realized at \(T=0\). At elevated temperatures the “icebergs meltdown” and the behavior of the system becomes similar to that with the fermion-condensate state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.A. Khodel, V.R. Shaginyan, JETP Lett. 51, 553 (1990)

    Google Scholar 

  2. V.A. Khodel, V.R. Shaginyan, V.V. Khodel, Phys. Rep. 249, 1 (1994)

    Google Scholar 

  3. V.A. Khodel, J.W. Clark, H. Li, M.V. Zverev, Phys. Rev. Lett. 98, 216404 (2007)

    Google Scholar 

  4. G.E. Volovik, JETP Lett. 53, 222 (1991)

    Google Scholar 

  5. V.R. Shaginyan, J.G. Han, J. Lee, Phys. Lett. A 329, 108 (2004)

    Google Scholar 

  6. M.Y. Amusia, V.R. Shaginyan, JETP Lett. 73, 232 (2001)

    Google Scholar 

  7. M.Y. Amusia, V.R. Shaginyan, Phys. Rev. B 63, 224507 (2001)

    Google Scholar 

  8. V.R. Shaginyan, M.Y. Amusia, A.Z. Msezane, K.G. Popov, Phys. Rep. 492, 31 (2010), arXiv:1006.2658

  9. M.Y. Amusia, K.G. Popov, V.R. Shaginyan, W.A. Stephanowich, Theory of Heavy-Fermion Compounds. Springer Series in Solid-State Sciences, vol. 182 (Springer, Berlin, 2015)

    Google Scholar 

  10. C.M. Varma, Z. Nussionov, W. van Saarloos, Phys. Rep. 361, 267 (2002)

    Google Scholar 

  11. C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 63, 1996 (1989)

    Google Scholar 

  12. C.M. Varma, P.B. Littlewood, S. Schmittrink, E. Abrahams, A.E. Ruckenstein, Phys. Rev. Lett. 64, 497 (1990)

    Google Scholar 

  13. G.E. Volovik, Acta Phys. Slov. 56, 49 (2006)

    Google Scholar 

  14. G.E. Volovik, in Quantum Analogues: From Phase Transitions to Black Holes and Cosmology. Springer Lecture Notes in Physics, vol. 718, ed. by W.G. Unruh, R. Schutzhold (Springer, Orlando, 2007), p. 31

    Google Scholar 

  15. V.R. Shaginyan, V.A. Stephanovich, A.Z. Msezane, P. Schuck, J.W. Clark, M.Y. Amusia, G.S. Japaridze, K.G. Popov, E.V. Kirichenko, J. Low Temp. Phys. 189, 410 (2017)

    Google Scholar 

  16. L.N. Oliveira, E.K.U. Gross, W. Kohn, Phys. Rev. Lett. 60, 2430 (1988)

    Google Scholar 

  17. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957)

    Google Scholar 

  18. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Usp. 50, 563 (2007)

    Google Scholar 

  19. E.M. Lifshitz, L.P. Pitaevskii, Statisticheskaya Fizika (Statistical Physics), Part 2. Course of Theoretical Physics (Pergamon Press, Oxford, 1980)

    Google Scholar 

  20. V.A. Khodel, J.W. Clark, M.V. Zverev, Phys. Rev. B 78, 075120 (2008)

    Google Scholar 

  21. V.A. Khodel, M.V. Zverev, V.M. Yakovenko, Phys. Rev. Lett. 95, 236402 (2005)

    Google Scholar 

  22. D.V. Khveshchenko, R. Hlubina, T.M. Rice, Phys. Rev. B 48, 10766 (1993)

    Google Scholar 

  23. I.E. Dzyaloshinskii, J. Phys. I (France) 6, 119 (1996)

    Google Scholar 

  24. D. Lidsky, J. Shiraishi, Y. Hatsugai, M. Kohmoto, Phys. Rev. B 57, 1340 (1998)

    Google Scholar 

  25. V.Y. Irkhin, A.A. Katanin, M.I. Katsnelson, Phys. Rev. Lett. 89, 076401 (2002)

    Google Scholar 

  26. D. Yudin, D. Hirschmeier, H. Hafermann, O. Eriksson, A.I. Lichtenstein, M.I. Katsnelson, Phys. Rev. Lett. 112, 070403 (2014)

    Google Scholar 

  27. S. Link, S. Forti, A. Stöhr, K. Küster, M. Rösner, D. Hirschmeier, C. Chen, J. Avila, M.C. Asensio, A.A. Zakharov, T.O. Wehling, A.I. Lichtenstein, M.I. Katsnelson, U. Starke, Phys. Rev. B 100, 121407(R) (2019)

    Google Scholar 

  28. Y. Cao, V. Fatemi, A. Demir, S. Fang, S.L. Tomarken, J.Y. Luo, J.D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E. Kaxiras, R.C. Ashoori, P. Jarillo-Herrero, Nature 556, 80 (2018)

    Google Scholar 

  29. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43 (2018)

    Google Scholar 

  30. V.A. Khodel, V.R. Shaginyan, M.V. Zverev, JETP Lett. 65, 242 (1997)

    Google Scholar 

  31. R.B. Laughlin, D. Pines, Proc. Natl. Acad. Sci. USA 97, 28 (2000)

    Google Scholar 

  32. P.W. Anderson, Science 288, 480 (2000)

    Google Scholar 

  33. V.A. Khodel, J.W. Clark, V.R. Shaginyan, Solid State Commun. 96, 353 (1995)

    Google Scholar 

  34. J. Dukelsky, V. Khodel, P. Schuck, V. Shaginyan, Z. Phys. 102, 245 (1997)

    Google Scholar 

  35. V.A. Khodel, V.R. Shaginyan, in Condensed Matter Theories, vol. 12, ed. by J. Clark, V. Plant (Nova Science Publishers Inc., New York, 1997), p. 221

    Google Scholar 

  36. S.A. Artamonov, V.R. Shaginyan, JETP 92, 287 (2001)

    Google Scholar 

  37. P.V. Bogdanov, A. Lanzara, S.A. Kellar, X.J. Zhou, E.D. Lu, W.J. Zheng, G. Gu, J.I. Shimoyama, K. Kishio, H. Ikeda, R. Yoshizaki, Z. Hussain, Z.X. Shen, Phys. Rev. Lett. 85, 2581 (2000)

    Google Scholar 

  38. J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Phys. Rev. Lett. 96, 017005 (2006)

    Google Scholar 

  39. A. Kaminski, M. Randeria, J.C. Campuzano, M.R. Norman, H. Fretwell, J. Mesot, T. Sato, T. Takahashi, K. Kadowaki, Phys. Rev. Lett. 86, 1070 (2001)

    Google Scholar 

  40. T. Valla, A.V. Fedorov, P.D. Johnson, B.O. Wells, S.L. Hulbert, Q. Li, G.D. Gu, N. Koshizuka, Science 285, 2110 (1999)

    Google Scholar 

  41. T. Valla, A.V. Fedorov, P.D. Johnson, Q. Li, G.D. Gu, N. Koshizuka, Phys. Rev. Lett. 85, 828 (2000)

    Google Scholar 

  42. P. Coleman, C. Pépin, Q. Si, R. Ramazashvili, J. Phys. Condens. Matter 13, R723 (2001)

    Google Scholar 

  43. V.A. Khodel, JETP Lett. 86, 721 (2007)

    Google Scholar 

  44. V.R. Shaginyan, JETP Lett. 77, 99 (2003)

    Google Scholar 

  45. V.R. Shaginyan, M.Y. Amusia, K.G. Popov, Phys. Lett. A 373, 2281 (2009)

    Google Scholar 

  46. D. Takahashi, S. Abe, H. Mizuno, D. Tayurskii, K. Matsumoto, H. Suzuki, Y. Onuki, Phys. Rev. B 67, 180407(R) (2003)

    Google Scholar 

  47. P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, K.T.T. Tayama, O. Trovarelli, F. Steglich, Phys. Rev. Lett. 89, 056402 (2002)

    Google Scholar 

  48. S.A. Artamonov, Y.G. Pogorelov, V.R. Shaginyan, JETP Lett. 68, 942 (1998)

    Google Scholar 

  49. Y.G. Pogorelov, V.R. Shaginyan, in Condensed Matter Theories, vol. 18 (Nova Science Publishers Inc., New York, 2003), p. 191

    Google Scholar 

  50. M. de Llano, J.P. Vary, Phys. Rev. C 19, 1083 (1979)

    Google Scholar 

  51. M. de Llano, A. Plastino, J.P. Zabolitsky, Phys. Rev. C 20, 2418 (1979)

    Google Scholar 

  52. M.V. Zverev, M. Baldo, J. Phys. Condens. Matter 11, 2059 (1999)

    Google Scholar 

  53. M.V. Zverev, M. Baldo, JETP 87, 1129 (1998)

    Google Scholar 

  54. I.M. Lifshitz, Sov. Phys. JETP 11, 130 (1960)

    Google Scholar 

  55. I.M. Lifshitz, Sov. Phys. JETP 1130 (1960)

    Google Scholar 

  56. M. Nakahara, Geometry, Topology and Physics (IOP Publishing, Bristol, 1990)

    Google Scholar 

  57. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Google Scholar 

  58. W. Kohn, P. Vashishta, in Theory of the Inhomogeneous Electron Gas, ed. by S. Lundqvist, N. March (Plenum, New York, 1983)

    Google Scholar 

  59. V.R. Shaginyan, Phys. Lett. A 249, 237 (1998)

    Google Scholar 

  60. M.Y. Amusia, V.R. Shaginyan, Phys. Lett. A 269, 337 (2000)

    Google Scholar 

  61. V.R. Shaginyan, JETP Lett. 68, 527 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miron Amusia .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amusia, M., Shaginyan, V. (2020). Topological Fermion-Condensation Quantum Phase Transition. In: Strongly Correlated Fermi Systems. Springer Tracts in Modern Physics, vol 283. Springer, Cham. https://doi.org/10.1007/978-3-030-50359-8_4

Download citation

Publish with us

Policies and ethics