Abstract
Efficient tools and frameworks for image and video annotation become more necessary for pattern recognition and computer vision research as datasets for training and testing of algorithms get increasingly larger. Different software packages have been developed to deal with these tasks, but they are usually designed for specific demands, problems or are not open to the public. This paper presents an open source multipurpose tool for annotation on multimedia datasets with extended flexibility through customizable labels, option of working on a shared database for collaborative annotation and with special care given on usability and efficiency for the best user experience. The Annotation Tool is available in the following link: www.thi.de/go/thi-labeling-tool.
Keywords
- Open source
- Video annotation
- Multipurpose
- Generic annotation
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Ambardekar, A., Nicolescu, M., Dascalu, S.: Ground truth verification tool (GTVT) for video surveillance systems. In: 2009 Second International Conferences on Advances in Computer-Human Interactions, pp. 354–359. IEEE (2009)
Boersma, P., et al.: The use of praat in corpus research. In: The Oxford Handbook of Corpus Phonology, pp. 342–360 (2014)
Doermann, D., Mihalcik, D.: Tools and techniques for video performance evaluation. In: Proceedings 15th International Conference on Pattern Recognition, ICPR-2000, vol. 4, pp. 167–170. IEEE (2000)
Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: Proceedings of the 27th ACM International Conference on Multimedia, MM 2019. ACM, New York (2019). https://doi.org/10.1145/3343031.3350535
Jaynes, C., Webb, S., Steele, R., Xiong, Q.: An open development environment for evaluation of video surveillance systems. In: PETS02, pp. 32–39 (2002)
Kavasidis, I., Palazzo, S., Di Salvo, R., Giordano, D., Spampinato, C.: A semi-automatic tool for detection and tracking ground truth generation in videos. In: Proceedings of the 1st International Workshop on Visual Interfaces for Ground Truth Collection in Computer Vision Applications, p. 6. ACM (2012)
Kavasidis, I., Palazzo, S., Salvo, R.D., Giordano, D., Spampinato, C.: An innovative web-based collaborative platform for video annotation. Multimed. Tools Appl. 70(1), 413–432 (2013). https://doi.org/10.1007/s11042-013-1419-7
Kipp, M.: Anvil: the video annotation research tool. In: Handbook of Corpus Phonology, pp. 420–436 (2014)
Labelbox (2018). https://github.com/Labelbox/Labelbox/blob/master/README.md
Lausberg, H., Sloetjes, H.: Coding gestural behavior with the NEUROGES-ELAN system. Behav. Res. Methods 41(3), 841–849 (2009). https://doi.org/10.3758/BRM.41.3.841
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Llaneras, R.E., Salinger, J., Green, C.A.: Human factors issues associated with limited ability autonomous driving systems: drivers’ allocation of visual attention to the forward roadway (2013)
MacMullen, W.J.: Annotation as process, thing, and knowledge: multi-domain studies of structured data annotation. In: ASIST Annual Meeting (2005)
Maurer, M., Gerdes, J.C., Lenz, B., Winner, H., et al.: Autonomous Driving. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8
Muhrer, E., Reinprecht, K., Vollrath, M.: Driving with a partially autonomous forward collision warning system: how do drivers react? Hum. Factors 54(5), 698–708 (2012)
Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vis. 77(1–3), 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8
da Silva, J.L., Thomas Brandmeier, A.Z.: Automatic measurement of automobile drivers attention level via computer vision. In: XXIV Congresso Brasileiro De Engenharia Biomédica (2014)
Spampinato, C., Boom, B., He, J.: First international workshop on visual interfaces for ground truth collection in computer vision applications. In: Proceedings of the International Working Conference on Advanced Visual Interfaces, pp. 812–814. ACM (2012)
Spampinato, C., Boom, B., Huet, B.: Vigta 2013: Proceedings of the International Workshop on Video and Image Ground Truth in Computer Vision Applications, pp. 812–814. ACM (2013)
Supervisely (2019). https://github.com/supervisely/supervisely/blob/master/README.md
Tzutalin: Labelimg (2015). https://github.com/tzutalin/labelImg/blob/master/README.rst
Vondrick, C., Patterson, D., Ramanan, D.: Efficiently scaling up crowdsourced video annotation. Int. J. Comput. Vis. 101(1), 184–204 (2013). https://doi.org/10.1007/s11263-012-0564-1
VoTT: Vott (visual object tagging tool) (2019). https://github.com/microsoft/VoTT/blob/master/README.md
Walch, M., Lange, K., Baumann, M., Weber, M.: Autonomous driving: investigating the feasibility of car-driver handover assistance. In: Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, pp. 11–18. ACM (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
da Silva, J.L., Tabata, A.N., Broto, L.C., Cocron, M.P., Zimmer, A., Brandmeier, T. (2020). Open Source Multipurpose Multimedia Annotation Tool. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-50347-5_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50346-8
Online ISBN: 978-3-030-50347-5
eBook Packages: Computer ScienceComputer Science (R0)