Skip to main content

FlowChroma - A Deep Recurrent Neural Network for Video Colorization

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12131))

Included in the following conference series:

Abstract

We develop an automated video colorization framework that minimizes the flickering of colors across frames. If we apply image colorization techniques to successive frames of a video, they treat each frame as a separate colorization task. Thus, they do not necessarily maintain the colors of a scene consistently across subsequent frames. The proposed solution includes a novel deep recurrent encoder-decoder architecture which is capable of maintaining temporal and contextual coherence between consecutive frames of a video. We use a high-level semantic feature extractor to automatically identify the context of a scenario including objects, with a custom fusion layer that combines the spatial and temporal features of a frame sequence. We demonstrate experimental results, qualitatively showing that recurrent neural networks can be successfully used to improve color consistency in video colorization.

Supported by Amazon Cloud Credits for Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baldassarre, F., Morín, D.G., Rodés-Guirao, L.: Deep koalarization: image colorization using CNNS and inception-ResNet-v2. CoRR, abs/1712.03400 (2017)

    Google Scholar 

  2. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. CoRR, abs/1605.00075 (2016)

    Google Scholar 

  3. Deshpande, A., Rock, J., Forsyth, D.: Learning large-scale automatic image colorization. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 567–575, December 2015

    Google Scholar 

  4. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. 35(4), 110:1–110:11 (2016)

    Article  Google Scholar 

  5. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. CoRR, abs/1603.08511 (2016)

    Google Scholar 

  6. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. CoRR, abs/1705.02999 (2017)

    Google Scholar 

  7. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. CoRR, abs/1603.06668 (2016)

    Google Scholar 

  8. Hariharan, B., Arbeláez, P.A., Girshick, R.B., Malik, J.: Hypercolumns for object segmentation and fine-grained localization. CoRR, abs/1411.5752 (2014)

    Google Scholar 

  9. Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via multimodal predictions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 126–139. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_10

    Chapter  Google Scholar 

  10. Chia, A.Y.-S., et al.: Semantic colorization with internet images. ACM Trans. Graph. 30(6), 156:1–156:8 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gupta, R.K., Chia, A.Y.-S., Rajan, D., Ng, E.S., Zhiyong, H.: Image colorization using similar images. In: Proceedings of the 20th ACM International Conference on Multimedia, MM 2012, pp. 369–378. ACM, New York (2012)

    Google Scholar 

  12. Huang, Y.-C., Tung, Y.-S., Chen, J.-C., Wang, S.-W., Wu, J.-L.: An adaptive edge detection based colorization algorithm and its applications. In: Proceedings of the 13th Annual ACM International Conference on Multimedia, MULTIMEDIA 2005, pp. 351–354. ACM, New York (2005)

    Google Scholar 

  13. Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, EGSR 2005, pp. 201–210. Eurographics Association, Aire-la-Ville (2005)

    Google Scholar 

  14. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  15. Tai, Y.-W., Jia, J., Tang, C.-K.: Local color transfer via probabilistic segmentation by expectation-maximization. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 747–754, June 2005

    Google Scholar 

  16. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. ACM Trans. Graph. 21(3), 277–280 (2002)

    Article  Google Scholar 

  17. Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 15(5), 1120–1129 (2006)

    Article  Google Scholar 

  18. Luan, Q., Wen, F., Cohen-Or, D., Liang, L., Xu, Y.-Q., Shum, H.-Y.: Natural image colorization. In: Proceedings of the 18th Eurographics Conference on Rendering Techniques, EGSR 2007, pp. 309–320. Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  19. Morimoto, Y., Taguchi, Y., Naemura, T.: Automatic colorization of grayscale images using multiple images on the web. In: SIGGRAPH 2009: Posters, SIGGRAPH 2009, pp. 32:1–32:1. ACM, New York (2009)

    Google Scholar 

  20. Qu, Y., Wong, T.-T., Heng, P.-A.: Manga colorization. ACM Trans. Graph. (SIGGRAPH 2006 issue) 25(3), 1214–1220 (2006)

    Article  Google Scholar 

  21. Jiang, H., Sun, D., Jampani, V., Yang, M., Learned-Miller, E.G., Kautz, J.: Super slomo: high quality estimation of multiple intermediate frames for video interpolation. CoRR, abs/1712.00080 (2017)

    Google Scholar 

  22. Jiang, Y.-G., Wu, Z., Wang, J., Xue, X., Chang, S.-F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 40(2), 352–364 (2018)

    Article  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, abs/1412.6980 (2014)

    Google Scholar 

  24. Ratliff, N.D., Silver, D., Bagnell, J.A.: Learning to search: functional gradient techniques for imitation learning. Auton. Robots 27(1), 25–53 (2009). https://doi.org/10.1007/s10514-009-9121-3

    Article  Google Scholar 

  25. Ruderman, D.L., Cronin, T.W., Chiao, C.-C.: Statistics of cone responses to natural images: implications for visual coding. J. Opt. Soc. Am. A 15, 2036–2045 (1998)

    Article  Google Scholar 

  26. Sheng, B., Sun, H., Magnor, M., Li, P.: Video colorization using parallel optimization in feature space. IEEE Trans. Circuits Syst. Video Technol. 24(3), 407–417 (2014)

    Article  Google Scholar 

  27. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. CoRR, abs/1512.00567 (2015)

    Google Scholar 

  28. Tola, E., Lepetit, V., Fua, P.: A fast local descriptor for dense matching. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008

    Google Scholar 

  29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanuka Wijayakoon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wijesinghe, T., Abeysinghe, C., Wijayakoon, C., Jayathilake, L., Thayasivam, U. (2020). FlowChroma - A Deep Recurrent Neural Network for Video Colorization. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50347-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50346-8

  • Online ISBN: 978-3-030-50347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics