Advertisement

Identification Issues Associated with the Use of Wearable Accelerometers in Lifelogging

Conference paper
  • 606 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12207)

Abstract

Personal lifelogging builds upon the pervasive and continuous acquisition of sensor measurements and signals in time, and this may expose the subject, and eventually bystanders, to privacy violations. While the issue is easy to understand for image and video data, the risks associated to the use of wearable accelerometers is less clear and may be underestimated. This work addresses the problem of understanding if acceleration measurements collected from the wrist, by subjects performing different types of Activities of Daily Living (ADLs), may release personal details, for example about their gender or age. A positive outcome would motivate the need for de-identification algorithms to be applied to acceleration signals, embedded into wearable devices, in order to limit the unintentional release of personal details and ensure the necessary privacy by design and by default requirements.

Keywords

Lifelogging Wrist accelerometer Classification Privacy 

References

  1. 1.
    Attal, F., Mohammed, S., Dedabrishvili, M., Chamroukhi, F., Oukhellou, L., Amirat, Y.: Physical human activity recognition using wearable sensors. Sensors 15, 31314–31338 (2015)CrossRefGoogle Scholar
  2. 2.
    Campos, R.S., Lovisolo, L.: Person identification based on smartphones inertial sensors. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7, July 2018Google Scholar
  3. 3.
    Chin, Z.H., Ng, H., Yap, T.T.V., Tong, H.L., Ho, C.C., Goh, V.T.: Daily activities classification on human motion primitives detection dataset. In: Alfred, R., Lim, Y., Ibrahim, A., Anthony, P. (eds.) Computational Science and Technology. LNEE, vol. 481, pp. 117–125. Springer, Singapore (2019).  https://doi.org/10.1007/978-981-13-2622-6_12CrossRefGoogle Scholar
  4. 4.
    Cleland, I., Donnelly, M.P., Nugent, C.D., Hallberg, J., Espinilla, M., Garcia-Constantino, M.: Collection of a diverse, realistic and annotated dataset for wearable activity recognition. In: 2018 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 555–560. IEEE (2018).  https://doi.org/10.1109/PERCOMW.2018.8480322
  5. 5.
    Climent-Pérez, P., Spinsante, S., Mihailidis, A., Flórez-Revuelta, F.: A review on video-based active and assisted living technologies for automated lifelogging. Expert Syst. Appl. 139, 112847 (2020)CrossRefGoogle Scholar
  6. 6.
    Cola, G., Avvenuti, M., Musso, F., Vecchio, A.: Gait-based authentication using a wrist-worn device. In: Proceedings of the 13th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MOBIQUITOUS 2016, pp. 208–217. Association for Computing Machinery, New York (2016)Google Scholar
  7. 7.
    Connor, P., Ross, A.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRefGoogle Scholar
  8. 8.
    Cook, D.J., Krishnan, N.C.: Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. Wiley, Hoboken (2015).  https://doi.org/10.1002/9781119010258.ch3CrossRefGoogle Scholar
  9. 9.
    EC: Complete guide to GDPR compliance. https://gdpr.eu/. Accessed Feb 2020
  10. 10.
    Empatica: E4 Wrist Band from Empatica User’s Manual (2018)Google Scholar
  11. 11.
    Ferdous, M.S., Chowdhury, S., Jose, J.M.: Analysing privacy in visual lifelogging. Pervasive Mob. Comput. 40, 430–449 (2017)CrossRefGoogle Scholar
  12. 12.
    Flórez-Revuelta, F., Mihailidis, A., Ziefle, M., Colonna, L., Spinsante, S.: Privacy-aware and acceptable lifelogging services for older and frail people: the PAAL project. In: 2018 IEEE 8th International Conference on Consumer Electronics - Berlin (ICCE-Berlin), pp. 1–4, September 2018Google Scholar
  13. 13.
    Gabell, A., Nayak, U.: The effect of age on variability in gait. J. Gerontol. 39(6), 662–666 (1984).  https://doi.org/10.1093/geronj/39.6.662CrossRefGoogle Scholar
  14. 14.
    Galluzzi, V., Herman, T., Polgreen, P.: Hand hygiene duration and technique recognition using wrist-worn sensors. In: Proceedings of the 14th International Conference on Information Processing in Sensor Networks, pp. 106–117. ACM (2015).  https://doi.org/10.1145/2737095.2737106
  15. 15.
    Hassan, M.M., Huda, M.S., Uddin, M.Z., Almogren, A., AlRubaian, M.A.: Human activity recognition from body sensor data using deep learning. J. Med. Syst. 42, 1–8 (2018)CrossRefGoogle Scholar
  16. 16.
    Huang, H., Lin, S.: Toothbrushing monitoring using wrist watch. In: Proceedings of the 14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pp. 202–215. ACM (2016).  https://doi.org/10.1145/2994551.2994563
  17. 17.
    Empatica Inc.: Empatica e4. http://support.empatica.com/hc/en-us/categories/200023126-E4-wristband. Accessed 4 Nov 2019
  18. 18.
    Jain, A., Kanhangad, V.: Gender classification in smartphones using gait information. Expert Syst. Appl. 93, 257–266 (2018)CrossRefGoogle Scholar
  19. 19.
    Kaufmann, M.: Data mining: practical machine learning tools and techniques. https://www.cs.waikato.ac.nz/ml/weka. Accessed 27 Dec 2019
  20. 20.
    Ni, Q., Cleland, I., Nugent, C., Hernando, A.B.G., de la Cruz, I.P.: Design and assessment of the data analysis process for a wrist-worn smart object to detect atomic activities in the smart home. Pervasive Mob. Comput. 56, 57–70 (2019)CrossRefGoogle Scholar
  21. 21.
    Pires, I.M., Garcia, N.M., Pombo, N., Flórez-Revuelta, F., Spinsante, S., Teixeira, M.C.: Identification of activities of daily living through data fusion on motion and magnetic sensors embedded on mobile devices. Pervasive Mob. Comput. 47, 78–93 (2018)CrossRefGoogle Scholar
  22. 22.
    Poli, A., Spinsante, S., Nugent, C., Cleland, I.: Improving the collection and understanding the quality of datasets for the aim of human activity recognition. In: Chen, F., García-Betances, R.I., Chen, L., Cabrera-Umpiérrez, M.F., Nugent, C. (eds.) Smart Assisted Living. CCN, pp. 147–165. Springer, Cham (2020).  https://doi.org/10.1007/978-3-030-25590-9_7CrossRefGoogle Scholar
  23. 23.
    Riaz, Q., Vögele, A., Krüger, B., Weber, A.: One small step for a man: estimation of gender, age and height from recordings of one step by a single inertial sensor. Sensors 15(12), 31999–32019 (2015).  https://doi.org/10.3390/s151229907CrossRefGoogle Scholar
  24. 24.
    Singha, T.B., Nath, R.K., Narsimhadhan, A.V.: Person recognition using smartphones’ accelerometer data. arXiv abs/1711.04689 (2017)Google Scholar
  25. 25.
    Sun, F., Zang, W., Gravina, R., Fortino, G., Li, Y.: Gait-based identification for elderly users in wearable healthcare systems. Inf. Fusion 53, 134–144 (2020)CrossRefGoogle Scholar
  26. 26.
    Sun, Y., Lo, F.P., Lo, B.: A deep learning approach on gender and age recognition using a single inertial sensor. In: 2019 IEEE 16th International Conference on Wearable and Implantable Body Sensor Networks (BSN), pp. 1–4, May 2019Google Scholar
  27. 27.
    Terrier, P., Reynard, F.: Effect of age on the variability and stability of gait: a cross-sectional treadmill study in healthy individuals between 20 and 69 years of age. Gait Posture 41(1), 170–174 (2015)CrossRefGoogle Scholar
  28. 28.
    Van hamme, T., Garofalo, G., Argones Rúa, E., Preuveneers, D., Joosen, W.: A systematic comparison of age and gender prediction on IMU sensor-based gait traces. Sensors 19(13) (2019).  https://doi.org/10.3390/s19132945. https://www.mdpi.com/1424-8220/19/13/2945

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations