Skip to main content

Early Work Vis-à-Vis Current Trends in Internet of Things Security

  • Chapter
  • First Online:
Innovations in Cybersecurity Education

Abstract

IoT has contributed heavily in the growth of Internet with its versatile applications. The IoT devices act as a bridge between the digital world and the real world. Therefore, the previous embankment of securities does not keep all these attacks at bay in recent years. Still, it is undeniable that IoT devices have become an integral part of our daily life. From emergency notification systems to health monitoring devices, IoT plays a vital role. As the versatility of the IoT devices is expanding, so the security challenges. The security issues impacting the IoT devices have become an enormous concern for the organizations spread across the world. The root cause of modern security threats in IoT devices is the lack of refined cybersecurity implementation towards real-time communications, data sharing, remote access, etc. For every smart business or home solutions, it is essential to provide suitable cybersecurity solutions in IoT devices to maintain their supremacy in the future digital world. The IoT devices most often become vulnerable towards modern security threats because of their elementary level security protocol.

To understand the vulnerabilities of IoT, we need to identify the attack vectors and provide the corresponding remediation methodologies proposed by the present-day researchers. Along with the remedial methodologies, several real-time security issues have been identified, responsible for different genres of IoT vulnerabilities as provided by the different state-of-the-art research work. The current education system requires a revolution in the field of cybersecurity education with various researches and innovations to address the enormous crisis of cybersecurity workforce and to keep the digital world safe and beautiful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Estimating Cyber Risk for the Financial Sector by Christine Lagarde. https://blogs.imf.org/2018/06/22/estimating-cyber-risk-for-the-financial-sector/access. Accessed 15 Mar 2020

  2. J.J. Cebula, M.E. Popeck, L.R. Young, A taxonomy of operational cyber security risks version 2. No. CMU/SEI-2014-TN-006. Carnegie-Mellon University Pittsburgh PA Software Engineering Inst (2014).

    Google Scholar 

  3. Top Cybersecurity Threats in 2020 by Michelle Moore. https://onlinedegrees.sandiego.edu/top-cyber-security-threats/. Accessed 15 Mar 2020

  4. M.C. Domingo, An overview of the internet of things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)

    Article  Google Scholar 

  5. M. Chan, D. Est’eve, J.-Y. Fourniols, C. Escriba, E. Campo, Smart wearable systems: current status and future challenges. Artif. Intell. Med. 56(3), 137–156 (2012)

    Article  Google Scholar 

  6. A.G. Ferreira, D. Fernandes, S. Branco, J.L. Monteiro, J. Cabral, A.P. Catarino, A.M. Rocha, A smart wearable system for sudden infant death syndrome monitoring, in Industrial Technology (ICIT), 2016 IEEE International Conference on, (IEEE, New York, 2016), pp. 1920–1925

    Chapter  Google Scholar 

  7. I. Bisio, A. Delfino, F. Lavagetto, A. Sciarrone, Enabling iot for in-home rehabilitation: accelerometer signals classification methods for activity and movement recognition. IEEE Internet Things J. 4(1), 135–146 (2017)

    Article  Google Scholar 

  8. Stanford University, The autism glass project at Stanford Medicine (2020). http://autismglass.stanford.edu/. Accessed 29 Jan 2020

  9. P. Patel, Autism glass takes top student health tech prize (2020). https://www.openminds.com/market-intelligence/bulletins/autism-glass-takes-top-student-health-tech-prize/. Accessed 29 Jan 2020

  10. N. Neshenko, E. Bou-Harb, J. Crichigno, G. Kaddoum, N. Ghani, Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoT exploitations. IEEE Commun. Surv. Tutorials 21(3), 2702–2733 (2019)

    Article  Google Scholar 

  11. R. Coppola, M. Morisio, Connected car: technologies, issues, future trends. ACM Comput. Surv. (CSUR) 49(3), 46 (2016)

    Article  Google Scholar 

  12. Top 5 Shocking IoT Security Breaches of 2019. https://www.pentasecurity.com/blog/top-5-shocking-iot-security-breaches-2019/. Accessed 20 Jan 2020

  13. Global IoT attack scenario. http://tadviser.com/index.php/Article:Cyber_attacks. Accessed 20 Jan 2020

  14. Year wise IoT attack statistics by Forbes. https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#51b74e615892. Accessed 20 Jan 2020

  15. Canonical Ltd, Who should bear the cost of iot security: consumers or vendors? https://ubuntu.com/blog/who-should-bear-the-cost-of-iot-security-consumers-or-vendors. Accessed 29 Jan 2020

  16. L. Atzori, A. Iera, G. Morabito, The internet of things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)

    Article  Google Scholar 

  17. J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of things (iot): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  18. Y. Wei, K. Sukumar, C. Vecchiola, D. Karunamoorthy, R. Buyya, Aneka cloud application platform and its integration with windows azure, arXiv preprint arXiv:1103.2590 (2011).

    Google Scholar 

  19. L. Da Xu, W. He, S. Li, Internet of things in industries: a survey. IEEE Trans. Indust. Informat. 10(4), 2233–2243 (2014)

    Article  Google Scholar 

  20. L. Atzori, A. Iera, G. Morabito, Understanding the internetof things: definition, potentials, and societal role of a fast evolving paradigm, Ad Hoc Netw (2016)

    Google Scholar 

  21. C. Perera, A. Zaslavsky, P. Christen, D. Georgakopoulos, Context aware computing for the internet of things: a survey. IEEE Commun. Surv. Tutorials 16(1), 414–454 (2014)

    Article  Google Scholar 

  22. S. Sicari, A. Rizzardi, L.A. Grieco, A. Coen-Porisini, Security, privacy and trust in internet of things: the road ahead. Comput. Netw. 76, 146–164 (2015)

    Article  Google Scholar 

  23. A. Mosenia, N.K. Jha, A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 5(4), 586–602 (2017)

    Article  Google Scholar 

  24. CISCO, The internet of things reference model. http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_4_2014.pdf. Accessed 29 Jan 2020

  25. A. Ouaddah, H. Mousannif, A.A. Elkalam, A.A. Ouahman, Access control in the internet of things: big challenges and new opportunities. Comput. Netw. 112, 237–262 (2017)

    Article  Google Scholar 

  26. J. Granjal, E. Monteiro, J.S. Silva, Security for the internet of things: a survey of existing protocols and open research issues. IEEE Commun. Surv. Tutorials 17(3), 1294–1312 (2015)

    Article  Google Scholar 

  27. R. Roman, J. Zhou, J. Lopez, On the features and challenges of security and privacy in distributed internet of things. Comput. Netw. 57(10), 2266–2279 (2013)

    Article  Google Scholar 

  28. R.H. Weber, E. Studer, Cybersecurity in the internet of things: legal aspects. Comput. Law Secur. Rev. 32(5), 715–728 (2016)

    Article  Google Scholar 

  29. N. Zhang, S. Demetriou, X. Mi, W. Diao, K. Yuan, P. Zong, F. Qian, X. Wang, K. Chen, Y. Tian et al., Understanding iot security through the data crystal ball: where we are now and where we are going to be, arXiv preprint arXiv:1703.09809 (2017)

    Google Scholar 

  30. E. Bou-Harb, M. Debbabi, C. Assi, A novel cyber security capability: inferring internet-scale infections by correlating malware and probing activities. Comput. Netw. 94, 327–343 (2016)

    Article  Google Scholar 

  31. Behavioral analytics for inferring large-scale orchestrated probing events, in 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (IEEE, New York, 2014), pp. 506–511

    Google Scholar 

  32. Big data behavioral analytics meet graph theory: on effective botnet takedowns, IEEE Network, 31(1), 18–26 (2017)

    Google Scholar 

  33. E. Bou-Harb, C. Fachkha, M. Debbabi, C. Assi, Inferring internet scale infections by correlating malware and probing activities, in 2014 IEEE International Conference on Communications (ICC), (IEEE, New York, 2014), pp. 640–646

    Chapter  Google Scholar 

  34. M. Anagnostopoulos, G. Kambourakis, S. Gritzalis, New facets of mobile botnet: architecture and evaluation. Int. J. Inf. Secur. 15(5), 455–473 (2016)

    Article  Google Scholar 

  35. M. Burhan, R. Rehman, B. Khan, B.-S. Kim, Iot elements, layered architectures and security issues: a comprehensive survey. Sensors 18(9), 2796 (2018)

    Article  Google Scholar 

  36. R. Mahmoud, T. Yousuf, F. Aloul, I. Zualkernan, Internet of things (iot) security: current status, challenges and prospective measures, in 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), (IEEE, New York, 2015), pp. 336–341

    Chapter  Google Scholar 

  37. W. Trappe, R. Howard, R.S. Moore, Low-energy security: limits and opportunities in the internet of things. IEEE Secur. Privacy 13(1), 14–21 (2015)

    Article  Google Scholar 

  38. D.G. Costa, I. Silva, L.A. Guedes, F. Vasques, P. Portugal, Availability issues in wireless visual sensor networks. Sensors 14(2), 2795–2821 (2014)

    Article  Google Scholar 

  39. E.Y. Vasserman, N. Hopper, Vampire attacks: draining life from wireless ad hoc sensor networks. IEEE Trans. Mob. Comput. 12(2), 318–332 (2013)

    Article  Google Scholar 

  40. N. Vidgren, K. Haataja, J.L. Patino-Andres, J.J. Ramirez-Sanchis, P. Toivanen, Security threats in zigbee-enabled systems: vulnerability evaluation, practical experiments, countermeasures, and lessons learned, in System Sciences (HICSS), 2013 46th Hawaii International Conference on, (IEEE, New York, 2013), pp. 5132–5138

    Chapter  Google Scholar 

  41. P. Morgner, S. Mattejat, Z. Benenson, All your bulbs are belong to us: investigating the current state of security in connected lighting systems, arXiv preprint arXiv:1608.03732 (2016)

    Google Scholar 

  42. T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, G. Carle, Dtls based security and two-way authentication for the internet of things. Ad Hoc Netw. 11(8), 2710–2723 (2013)

    Article  Google Scholar 

  43. I. Hafeez, A.Y. Ding, L. Suomalainen, A. Kirichenko, S. Tarkoma, Securebox: toward safer and smarter iot networks, in Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking, (ACM, New York, 2016), pp. 55–60

    Chapter  Google Scholar 

  44. P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, M. Ylianttila, Pauthkey: a pervasive authentication protocol and key establishmentscheme for wireless sensor networks in distributed iot applications. Int. J. Distrib. Sens. Netw. 10, 7 (2014)

    Article  Google Scholar 

  45. A. Furfaro, L. Argento, A. Parise, A. Piccolo, Using virtual environments for the assessment of cybersecurity issues in iot scenarios. Simul. Model. Pract. Theory 73, 43–54 (2017)

    Article  Google Scholar 

  46. E. Ronen, A. Shamir, Extended functionality attacks on iot devices: the case of smart lights, in Security and Privacy (Euro S&P), 2016 IEEE European Symposium on, (IEEE, New York, 2016), pp. 3–12

    Chapter  Google Scholar 

  47. V. Sachidananda, S. Siboni, A. Shabtai, J. Toh, S. Bhairav, Y. Elovici, Let the cat out of the bag: a holistic approach towards security analysis of the internet of things, in Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security, (ACM, New York, 2017), pp. 3–10

    Chapter  Google Scholar 

  48. H. Shafagh, A. Hithnawi, A. Droscher, S. Duquennoy, W. Hu, Talos: encrypted query processing for the internet of things, in Proceedings of the 13th ACM conference on embedded networked sensor systems, (ACM, New York, 2015), pp. 197–210

    Chapter  Google Scholar 

  49. B. Wei, G. Liao, W. Li, Z. Gong, A practical one-time file encryption protocol for iot devices, in Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference on, vol. 2, (IEEE, New York, 2017), pp. 114–119

    Google Scholar 

  50. A. Biryukov, D. Dinu, Y. Le Corre, Side-channel attacks meet secure network protocols, in International conference on applied cryptography and network security, (Springer, New York, 2017), pp. 435–454

    Chapter  Google Scholar 

  51. S. Siboni, A. Shabtai, N.O. Tippenhauer, J. Lee, Y. Elovici, Advanced security testbed framework for wearable iot devices. ACM Trans. Inter. Technol. 16(4), 26 (2016)

    Article  Google Scholar 

  52. K. Angrishi, Turning internet of things (iot) into internet of vulnerabilities (iov): iot botnets, arXiv preprint. arXiv:1702.03681 (2017)

    Google Scholar 

  53. L. Markowsky, G. Markowsky, Scanning for vulnerable devices in the internet of things, in Intelligent data acquisition and advanced computing systems: technology and applications (IDAACS), 2015 IEEE 8th International Conference on, vol. 1, (IEEE, New York, 2015), pp. 463–467

    Google Scholar 

  54. P.K. Dhillon, S. Kalra, A lightweight biometrics based remoteuser authentication scheme for iot services. J. Informat. Secur. Appl. 34, 255–270 (2017)

    Google Scholar 

  55. Y.J. Jia, Q.A. Chen, S. Wang, A. Rahmati, E. Fernandes, Z.M. Mao, A. Prakash, S.J. Unviersity, Contexlot: towards providing contextual integrity to appified iot platforms. NDSS (2017)

    Google Scholar 

  56. A. Tekeoglu, A.S. Tosun, A testbed for security and privacy analysis of iot devices, in Mobile Ad Hoc and Sensor Systems (MASS), 2016 IEEE 13th International Conference on, (IEEE, New York, 2016), pp. 343–348

    Chapter  Google Scholar 

  57. Radware Ltd., “brickerbot” results in pdos attack (2020). https://security.radware.com/ddos-threats-attacks/brickerbot-pdos-permanent-denial-of-service/. Accessed 29 Jan 2020

  58. A. Cui, M. Costello, S. J. Stolfo, When firmware modifications attack: a case study of embedded exploitation. NDSS (2013)

    Google Scholar 

  59. A. Costin, J. Zaddach, A. Francillon, D. Balzarotti, S. Antipolis, A large-scale analysis of the security of embedded firmwares. USENIX Security (2014), pp. 95–110

    Google Scholar 

  60. Q. Feng, R. Zhou, C. Xu, Y. Cheng, B. Testa, H. Yin, Scalable graph-based bug search for firmware images, in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, (ACM, New York, 2016), pp. 480–491

    Chapter  Google Scholar 

  61. H. Elmiligi, F. Gebali, M.W. El-Kharashi, Multi-dimensional analysis of embedded systems security. Microprocess. Microsyst. 41, 29–36 (2016)

    Article  Google Scholar 

  62. Z. Basnight, J. Butts, J. Lopez, T. Dube, Firmware modification attacks on programmable logic controllers. Int. J. Crit. Infrastruct. Prot. 6(2), 76–84 (2013)

    Article  Google Scholar 

  63. C. Konstantinou, M. Maniatakos, Impact of firmware modification attacks on power systems field devices, in 2015 IEEE International Conference on Smart Grid Communications (SmartGridComm) (2015), pp. 283–288

    Google Scholar 

  64. B. Bencs’ath, L. Butty’an, T. Paulik, Xcs based hidden firmware modification on embedded devices, in Software, Telecommunications and Computer Networks (SoftCOM), 2011 19th International Conference on, (IEEE, New York, 2011), pp. 1–5

    Google Scholar 

  65. B. Ur, J. Jung, S. Schechter, The current state of access control for smart devices in homes, in Workshop on Home Usable Privacy and Security (HUPS). HUPS 2014 (2013)

    Google Scholar 

  66. G. Ho, D. Leung, P. Mishra, A. Hosseini, D. Song, D. Wagner, Smart locks: lessons for securing commodity internet of things devices, in Proceedings of the 11th ACM on Asia conference on computer and communications security, (ACM, New York, 2016), pp. 461–472

    Chapter  Google Scholar 

  67. K. Yang, D. Forte, M.M. Tehranipoor, Protecting endpoint devices in iot supply chain, in Computer-Aided Design (ICCAD), 2015 IEEE/ACM International Conference on, (IEEE, New York, 2015), pp. 351–356

    Chapter  Google Scholar 

  68. E. Bou-Harb, C. Fachkha, M. Pourzandi, M. Debbabi, C. Assi, Communication security for smart grid distribution networks. IEEE Commun. Mag. 51(1), 42–49 (2013)

    Article  Google Scholar 

  69. J. Wurm, K. Hoang, O. Arias, A.-R. Sadeghi, Y. Jin, Security analysis on consumer and industrial iot devices, in Design Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific, (IEEE, New York, 2016), pp. 519–524

    Chapter  Google Scholar 

  70. S. Farahani, ZigBee wireless networks and transceivers. News (2011)

    Google Scholar 

  71. A. Elahi, A. Gschwender, ZigBee wireless sensor and control network (Pearson Education, 2009)

    Google Scholar 

  72. P. Radmand, M. Domingo, J. Singh, J. Arnedo, A. Talevski, S. Petersen, S. Carlsen, Zigbee/zigbee pro security assessment based on compromised cryptographic keys, in P2P, parallel, grid, cloud and internet computing (3PGCIC), 2010 International Conference on, (IEEE, New York, 2010), pp. 465–470

    Chapter  Google Scholar 

  73. R. Roman, C. Alcaraz, J. Lopez, N. Sklavos, Key management systems for sensor networks in the context of the internet of things. Comput. Electr. Eng. 37(2), 147–159 (2011)

    Article  Google Scholar 

  74. N.E. Petroulakis, E.Z. Tragos, A.G. Fragkiadakis, G. Spanoudakis, A lightweight framework for secure life-logging in smart environments. Inf. Secur. Tech. Rep. 17(3), 58–70 (2013)

    Article  Google Scholar 

  75. M. Patton, E. Gross, R. Chinn, S. Forbis, L. Walker, H. Chen, Uninvited connections: a study of vulnerable devices on the internet of things (iot), in Intelligence and Security Informatics Conference (JISIC), 2014 IEEE Joint, (IEEE, New York, 2014), pp. 232–235

    Chapter  Google Scholar 

  76. Shodan R. http://shodan.io. Accessed 29 Jan 2020

  77. A. Cui, S.J. Stolfo, A quantitative analysis of the insecurity of embedded network devices: results of a wide-area scan, in Proceedings of the 26th annual computer security applications conference, (ACM, New York, 2010), pp. 97–106

    Google Scholar 

  78. B. Copos, K. Levitt, M. Bishop, J. Rowe, Is anybody home? Inferring activity from smart home network traffic, in Security and privacy workshops (SPW), 2016 IEEE, (IEEE, New York, 2016), pp. 245–251

    Chapter  Google Scholar 

  79. H. Wang, T.T.-T. Lai, R. Roy Choudhury, Mole: motion leaks through smartwatch sensors, in Proceedings of the 21st annual international conference on mobile computing and networking, (ACM, New York, 2015), pp. 155–166

    Google Scholar 

  80. C. Wang, X. Guo, Y. Wang, Y. Chen, B. Liu, Friend or foe?: Your wearable devices reveal your personal pin, in Proceedings of the 11th ACM on Asia conference on computer and communications security, (ACM, New York, 2016), pp. 189–200

    Chapter  Google Scholar 

  81. B. Ghena, W. Beyer, A. Hillaker, J. Pevarnek, J.A. Halderman, Green lights forever: analyzing the security of traffic infrastructure. WOOT 14, 7–7 (2014)

    Google Scholar 

  82. A. Tekeoglu, A.S. Tosun, Investigating security and privacy of a cloud-based wireless ip camera: Netcam, in Computer Communication and Networks (ICCCN), 2015 24th International Conference on, (IEEE, New York, 2015), pp. 1–6

    Google Scholar 

  83. C. Schuett, J. Butts, S. Dunlap, An evaluation of modification attacks on programmable logic controllers. Int. J. Crit. Infrastruct. Prot. 7(1), 61–68 (2014)

    Article  Google Scholar 

  84. Botnet of 25,000 Cameras Located in 105 Countries Launches Massive DDoS Attacks ByRafia Shaikh. https://wccftech.com/massive-botnet-25000-iot-launch-ddos/. Accessed 22 Jan 2020

  85. C. Kolias, G. Kambourakis, A. Stavrou, J. Voas, Ddos in the iot: Mirai and other botnets. Computer 50(7), 80–84 (2017)

    Article  Google Scholar 

  86. E. Bou-Harb, M. Debbabi, C. Assi, Cyber scanning: a comprehensive survey. IEEE Commun. Surv. Tutorials 16(3), 1496–1519 (2014)

    Article  Google Scholar 

  87. M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein, J. Cochran, Z. Durumeric, J.A. Halderman, L. Invernizzi, M. Kallitsis et al., Understanding the mirai botnet, in 26th fUSENIXg Security Symposium (fUSENIXg Security 17) (2017), pp. 1093–1110

    Google Scholar 

  88. L. Metongnon, R. Sadre, Beyond telnet: prevalence of iot protocols in telescope and honeypot measurements, in Proceedings of the 2018 workshop on traffic measurements for cybersecurity, (ACM, New York, 2018), pp. 21–26

    Chapter  Google Scholar 

  89. Internet of things teddy bear leaked 2 million parent and kids message recordings. https://www.vice.com/en_us/article/pgwean/internet-of-things-teddy-bear-leaked-2-million-parent-and-kids-message-recordings. Accessed 29 Jan 2020

  90. Y. Zhou, D. Feng, Side-channel attacks: ten years after its publication and the impacts on cryptographic module security testing. IACR Cryptol. ePrint Arch. 2005, 388 (2005)

    Google Scholar 

  91. Y. Liu, P. Ning, M.K. Reiter, False data injection attacks against state estimation in electric power grids. ACM Trans. Informat. Syst. Secur. 14(1), 13 (2011)

    Google Scholar 

  92. CRIMESIDER STAFF, CBS news, Baby monitor hacker delivers creepy message to child. https://www.cbsnews.com/news/baby-monitor-hacker-delivers-creepy-message-to-child/. Accessed 29 Jan 2020

  93. M. Smache, N. El Mrabet, J.-J. Gilquijano, A. Tria, E. Riou, C. Gregory, Modeling a node capture attack in a secure wireless sensor networks, in Internet of Things (WF-IoT), 2016 IEEE 3rd World Forum on, (IEEE, New York, 2016), pp. 188–193

    Chapter  Google Scholar 

  94. Metropolitan.fi, Ddos attack halts heating in Finland amidst winter. https://metropolitan.fi/entry/ddos-attack-halts-heating-in-finland-amidst-winter. Accessed 29 Jan 2020

  95. J. Zhao, On resilience and connectivity of secure wireless sensor networks under node capture attacks. IEEE Trans. Informat. Forens. Secur. 12(3), 557–571 (2017)

    Article  Google Scholar 

  96. L. Eschenauer, V.D. Gligor, A key-management scheme for distributed sensor networks, in Proceedings of the 9th ACM conference on computer and communications security, (ACM, New York, 2002), pp. 41–47

    Google Scholar 

  97. T. Bonaci, L. Bushnell, R. Poovendran, Node capture attacks in wireless sensor networks: a system theoretic approach, in Decision and Control (CDC), 2010 49th IEEE Conference on, (IEEE, New York, 2010), pp. 6765–6772

    Chapter  Google Scholar 

  98. M. Qabulio, Y.A. Malkani, A. Keerio, A framework for securing mobile wireless sensor networks against physical attacks, in Emerging Technologies (ICET), 2016 International Conference on, (IEEE, New York, 2016), pp. 1–6

    Google Scholar 

  99. A. Dunkels, O. Schmidt, N. Finne, J. Eriksson, F. Osterlind, N. Tsiftes, M. Durvy, The contikios: the operating system for the internet of things (2011). http://www.contikios.org

  100. F. Osterlind, A sensor network simulator for the contikios, Swedish Institute of Computer Science (SICS), Tech. Rep. T2006-05 (2006)

    Google Scholar 

  101. A. Costin, A. Zarras, A. Francillon, Automated dynamic firmware analysis at scale: a case study on embedded web interfaces, in Proceedings of the 11th ACM on Asia conference on computer and communications security, (ACM, New York, 2016), pp. 437–448

    Chapter  Google Scholar 

  102. Sarosys LLC, Arachni. Web application security scanner framework. http://www.arachni-scanner.com/. Accessed 29 Jan 2020

  103. OWASP, Owasp zed attack proxy project. https://owasp.org/www-project-zap/. Accessed 29 Jan 2020

  104. Andres Riancho, w3af—open source web application security scanner. www.w3af.org. Accessed 29 Jan 2020

  105. C. Li, A. Raghunathan, N.K. Jha, Improving the trustworthiness of medical device software with formal verification methods. IEEE Embed. Syst. Lett. 5(3), 50–53 (2013)

    Article  Google Scholar 

  106. C. Mellon, Cbmc. bounded model checking for software. http://www.cprover.org/cbmc/. Accessed 29 Jan 2020

  107. V. Balasubramanian, N. Kouvelas, K. Chandra, R. Prasad, A.G. Voyiatzis, W. Liu, A unified architecture for integrating energy harvesting iot devices with the mobile edge cloud, in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), (IEEE, New York, 2018), pp. 13–18

    Chapter  Google Scholar 

  108. C. Zhang, Y. Zhang, Y. Fang, Defending against physical destruction attacks on wireless sensor networks, in Military communications conference, 2006. MILCOM 2006, (IEEE, New York, 2006), pp. 1–7

    Google Scholar 

  109. M. Husa’k, J. Koma’rkova, E. Bou-Harb, P. Celeda, Survey of attack projection, prediction, and forecasting in cyber security. IEEE Commun. Surv. Tutorials 21(1), 640–660 (2019)

    Article  Google Scholar 

  110. Y.M.P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, C. Rossow, Iotpot: a novel honeypot for revealing current iot threats. J. Inform. Process. 24(3), 522–533 (2016)

    Article  Google Scholar 

  111. J. Guarnizo, A. Tambe, S. S. Bunia, M. Ochoa, N. Tippenhauer, A. Shabtai, Y. Elovici, Siphon: towards scalable high-interaction physical honeypots, arXiv preprint. arXiv:1701.02446 (2017)

    Google Scholar 

  112. E. Vasilomanolakis, S. Srinivasa, C.G. Cordero, M. Muhlhauser, Multi-stage attack detection and signature generation with ics honeypots, in IEEE/IFIP Workshop on Security for Emerging Distributed Network Technologies (DISSECT), (IEEE, New York, 2016)

    Google Scholar 

  113. E. Bou-Harb, W. Lucia, N. Forti, S. Weerakkody, N. Ghani, B. Sinopoli, Cyber meets control: a novel federated approach for resilient cps leveraging real cyber threat intelligence. IEEE Commun. Mag. 55(5), 198–204 (2017)

    Article  Google Scholar 

  114. C. Fachkha, E. Bou-Harb, A. Keliris, N. Memon, M. Ahamad, Internet-scale probing of cps: inference, characterization and orchestration analysis, in Proceedings of NDSS (2017), vol. 17

    Google Scholar 

  115. M. Galluscio, N. Neshenko, E. Bou-Harb, Y. Huang, N. Ghani, J. Crichigno, G. Kaddoum, A first empirical look on internet-scale exploitations of iot devices, in 2017 IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), (IEEE, New York, 2017), pp. 1–7

    Google Scholar 

  116. S. Raza, L. Wallgren, T. Voigt, Svelte: real-time intrusion detection in the internet of things. Ad Hoc Netw. 11(8), 2661–2674 (2013)

    Article  Google Scholar 

  117. L. Yang, C. Ding, M. Wu, K. Wang, Robust detection of false data injection attacks for the data aggregation in internet of things based environmental surveillance, Comput. Netw. (2017)

    Google Scholar 

  118. Hacking the skills shortage: a study of the international shortage in cybersecurity skills, Center for Strategic and International Studies 2016, McAfee, Part of Intel Security, Santa Clara. https://www.mcafee.com/us/resources/reports/rp-hacking-skills-shortage.pdf. Accessed 17 Mar 2020

  119. Cybersecurity Talent Crunch To Create 3.5 Million Unfilled Jobs Globally By 2021 by Frost & Sullivan. https://cybersecurityventures.com/jobs/access. Accessed 15 Mar 2020

  120. The UK Cyber Security Strategy: Landscape Review. National Audit Office. February 2013. http://www.nao.org.uk/wp-content/uploads/2013/03/Cyber-security-Full-report.pdf. Accessed 17 Mar 2020

  121. National Centers of Academic Excellence. National Security Agency (NSA) Central Security Service (CSS). https://www.nsa.gov/resources/students-educators/centers-academic-excellence/. Accessed 17 Mar 2020

  122. Cybersecurity to be Part of India’s College, University Curriculum. The Times of India. January 17, 2013. http://articles.timesofindia.indiatimes.com/2013-01-17/education/36393726_1_cybersecurity-security-scenario-information-security. Accessed 17 Mar 2020

  123. M. Viveros, D. Jarvis. Cybersecurity Education for the Next Generation: Advancing a Collaborative Approach. Center for Applied Insights. IBM Corporation (2013)

    Google Scholar 

  124. Z. Shelby, C. Bormann, 6LoWPAN: the wireless embedded internet, vol 43 (Wiley, Hoboken, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Indu, P., Bhattacharyya, S. (2020). Early Work Vis-à-Vis Current Trends in Internet of Things Security. In: Daimi, K., Francia III, G. (eds) Innovations in Cybersecurity Education. Springer, Cham. https://doi.org/10.1007/978-3-030-50244-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50244-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50243-0

  • Online ISBN: 978-3-030-50244-7

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics