Skip to main content

Modulation of Cancer Cell Growth and Progression by Caveolin-1 in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1277))

  • 1112 Accesses

Abstract

Caveolin-1 (Cav-1), a major structural component of cell membrane caveolae, is involved in a variety of intracellular signaling pathways as well as transmembrane transport. Cav-1, as a scaffolding protein, modulates signal transduction associated with cell cycle progression, cellular senescence, cell proliferation and death, lipid homeostasis, etc. Cav-1 is also thought to regulate the expression or activity of oncoproteins, such as Src family kinases, H-Ras, protein kinase C, epidermal growth factor, extracellular signal-regulated kinase, and endothelial nitric oxide synthase. Because of its frequent overexpression or mutation in various tumor tissues and cancer cell lines, Cav-1 has been speculated to play a role as an oncoprotein in cancer development and progression. In contrast, Cav-1 may also function as a tumor suppressor, depending on the type of cancer cells and/or surrounding stromal cells in the tumor microenvironment as well as the stage of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  CAS  Google Scholar 

  2. Lamaze C, Torrino S (2015) Caveolae and cancer: a new mechanical perspective. Biom J 38:367–379

    Google Scholar 

  3. Bender F, Montoya M, Monardes V, Leyton L, Quest AF (2002) Caveolae and caveolae-like membrane domains in cellular signaling and disease: identification of downstream targets for the tumor suppressor protein caveolin-1. Biol Res 35:151–167

    Article  CAS  Google Scholar 

  4. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272:6525–6533

    Article  CAS  Google Scholar 

  5. Li S, Couet J, Lisanti MP (1996) Src tyrosine kinases, Galpha subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271:29182–29190

    Article  CAS  Google Scholar 

  6. Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP (1996) Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 271:2255–2261

    Article  CAS  Google Scholar 

  7. Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  CAS  Google Scholar 

  8. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M, Hou H Jr, Kneitz B, Edelmann W, Lisanti MP (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    Article  CAS  Google Scholar 

  9. Razani B, Combs TP, Wang XB, Frank PG, Park DS, Russell RG, Li M, Tang B, Jelicks LA, Scherer PE, Lisanti MP (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J Biol Chem 277:8635–8647

    Article  CAS  Google Scholar 

  10. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68:673–682

    Article  CAS  Google Scholar 

  11. Quest AF, Lobos-Gonzalez L, Nunez S, Sanhueza C, Fernandez JG, Aguirre A, Rodriguez D, Leyton L, Torres V (2013) The caveolin-1 connection to cell death and survival. Curr Mol Med 13:266–281

    Article  CAS  Google Scholar 

  12. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423–467

    Article  CAS  Google Scholar 

  13. Nwosu ZC, Ebert MP, Dooley S, Meyer C (2016) Caveolin-1 in the regulation of cell metabolism: a cancer perspective. Mol Cancer 15:71

    Article  CAS  Google Scholar 

  14. Ketteler J, Klein D (2018) Caveolin-1, cancer and therapy resistance. Int J Cancer 143:2092–2104

    Article  CAS  Google Scholar 

  15. Qian XL, Pan YH, Huang QY, Shi YB, Huang QY, Hu ZZ, Xiong LX (2019) Caveolin-1: a multifaceted driver of breast cancer progression and its application in clinical treatment. Onco Targets Ther 12:1539–1552

    Article  CAS  Google Scholar 

  16. Nunez-Wehinger S, Ortiz RJ, Diaz N, Diaz J, Lobos-Gonzalez L, Quest AF (2014) Caveolin-1 in cell migration and metastasis. Curr Mol Med 14:255–274

    Article  CAS  Google Scholar 

  17. Wang Z, Wang N, Liu P, Peng F, Tang H, Chen Q, Xu R, Dai Y, Lin Y, Xie X, Peng C, Situ H (2015) Caveolin-1, a stress relatedoncotarget, in drug resistance. Oncotarget 6:37135–37150

    Article  Google Scholar 

  18. Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288:C494–C506

    Article  CAS  Google Scholar 

  19. Ravid D, Maor S, Werner H, Liscovitch M (2006) Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzym Regul 46:163–175

    Article  CAS  Google Scholar 

  20. Goetz JG, Lajoie P, Wiseman SM, Nabi IR (2008) Caveolin-1 in tumor progression: the good, the bad and the ugly. Cancer Metastasis Rev 27:715–735

    Article  CAS  Google Scholar 

  21. Nam KH, Lee BL, Park JH, Kim J, Han N, Lee HE, Kim MA, Lee HS, Kim WH (2013) Caveolin 1 expression correlates with poor prognosis and focal adhesion kinase expression in gastric cancer. Pathobiology 80:87–94

    Article  CAS  Google Scholar 

  22. Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM (2002) Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 161:1647–1656

    Article  CAS  Google Scholar 

  23. Liang W, Hao Z, Han JL, Zhu DJ, Jin ZF, Xie WL (2014) CAV-1 contributes to bladder cancer progression by inducing epithelial-to-mesenchymal transition. Urol Oncol 32:855–863

    Article  CAS  Google Scholar 

  24. Kannan A, Krishnan A, Ali M, Subramaniam S, Halagowder D, Sivasithamparam ND (2014) Caveolin-1 promotes gastric cancer progression by up-regulating epithelial to mesenchymal transition by crosstalk of signalling mechanisms under hypoxic condition. Eur J Cancer 50:204–215

    Article  CAS  Google Scholar 

  25. Annabi B, Lachambre M, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R (2001) Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 353:547–553

    Article  CAS  Google Scholar 

  26. Cokakli M, Erdal E, Nart D, Yilmaz F, Sagol O, Kilic M, Karademir S, Atabey N (2009) Differential expression of Caveolin-1 in hepatocellular carcinoma: correlation with differentiation state, motility and invasion. BMC Cancer 9:65

    Article  CAS  Google Scholar 

  27. Buongiorno P, Bapat B (2005) Rho GTPases and cancer. Prog Mol Subcell Biol 40:29–53

    Article  CAS  Google Scholar 

  28. Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76

    Article  CAS  Google Scholar 

  29. Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brustle A, Ohashi PS, Lewis JD, Mak TW (2012) The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 31:884–896

    Article  CAS  Google Scholar 

  30. Zhao J, Guan JL (2009) Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev 28:35–49

    Article  Google Scholar 

  31. Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, Leung S, Wiseman SM, Nabi IR (2008) Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68:8210–8220

    Article  CAS  Google Scholar 

  32. Zou W, Ma X, Hua W, Chen B, Cai G (2015) Caveolin-1 mediates chemoresistance in cisplatin-resistant ovarian cancer cells by targeting apoptosis through the Notch-1/Akt/NF-κB pathway. Oncol Rep 34:3256–3263

    Article  CAS  Google Scholar 

  33. Yongsanguanchai N, Pongrakhananon V, Mutirangura A, Rojanasakul Y, Chanvorachote P (2015) Nitric oxide induces cancer stem cell-like phenotypes in human lung cancer cells. Am J Physiol Cell Physiol 308:C89–C100

    Article  CAS  Google Scholar 

  34. Yoon HJ, Kim DH, Kim SJ, Jang JH, Surh YJ (2019) Src-mediated phosphorylation, ubiquitination and degradation of Caveolin-1 promotes breast cancer cell stemness. Cancer Lett 449:8–19

    Article  CAS  Google Scholar 

  35. Engelman JA, Wykoff CC, Yasuhara S, Song KS, Okamoto T, Lisanti MP (1997) Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 272:16374–16381

    Article  CAS  Google Scholar 

  36. Fiucci G, Ravid D, Reich R, Liscovitch M (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375

    Article  CAS  Google Scholar 

  37. Koleske AJ, Baltimore D, Lisanti MP (1995) Reduction of caveolin and caveolae in oncogenically transformed cells. Proc Natl Acad Sci U S A 92:1381–1385

    Article  CAS  Google Scholar 

  38. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16:1391–1397

    Article  CAS  Google Scholar 

  39. Park DS, Razani B, Lasorella A, Schreiber-Agus N, Pestell RG, Iavarone A, Lisanti MP (2001) Evidence that Myc isoforms transcriptionally repress caveolin-1 gene expression via an INR-dependent mechanism. Biochemistry 40:3354–3362

    Article  CAS  Google Scholar 

  40. Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M (2004) Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 91:959–965

    Article  CAS  Google Scholar 

  41. Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279:51630–51646

    Article  CAS  Google Scholar 

  42. Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, James M, Hornick JL, Pereira EM, Milanezi F, Fletcher CD, Schmitt FC, Ashworth A, Reis-Filho JS (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13:90–101

    Article  CAS  Google Scholar 

  43. Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60:5870–5878

    CAS  Google Scholar 

  44. Nimri L, Barak H, Graeve L, Schwartz B (2013) Restoration of caveolin-1 expression suppresses growth, membrane-type-4 metalloproteinase expression and metastasis-associated activities in colon cancer cells. Mol Carcinog 52:859–870

    Article  CAS  Google Scholar 

  45. Shi L, Chen XM, Wang L, Zhang L, Chen Z (2007) Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer 109:1523–1531

    Article  CAS  Google Scholar 

  46. Zhang H, Su L, Muller S, Tighiouart M, Xu Z, Zhang X, Shin HJ, Hunt J, Sun SY, Shin DM, Chen ZG (2008) Restoration of caveolin-1 expression suppresses growth and metastasis of head and neck squamous cell carcinoma. Br J Cancer 99:1684–1694

    Article  CAS  Google Scholar 

  47. Lin M, DiVito MM, Merajver SD, Boyanapalli M, van Golen KL (2005) Regulation of pancreatic cancer cell migration and invasion by RhoC GTPase and caveolin-1. Mol Cancer 4:21

    Article  CAS  Google Scholar 

  48. Friedrich T, Richter B, Gaiser T, Weiss C, Janssen KP, Einwachter H, Schmid RM, Ebert MP, Burgermeister E (2013) Deficiency of caveolin-1 in Apcmin/+ mice promotes colorectal tumorigenesis. Carcinogenesis 34:2109–2118

    Article  CAS  Google Scholar 

  49. Capozza F, Williams TM, Schubert W, McClain S, Bouzahzah B, Sotgia F, Lisanti MP (2003) Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation. Am J Pathol 162:2029–2039

    Article  CAS  Google Scholar 

  50. Capozza F, Trimmer C, Castello-Cros R, Katiyar S, Whitaker-Menezes D, Follenzi A, Crosariol M, Llaverias G, Sotgia F, Pestell RG, Lisanti MP (2012) Genetic ablation of Cav1 differentially affects melanoma tumor growth and metastasis in mice: role of Cav1 inShh heterotypic signaling and transendothelial migration. Cancer Res 72:2262–2274. Trimmer C, Bonuccelli G, Katiyar S, Sotgia F, Pestell RG, Lisanti MP, Capozza E (2013) Cav1 suppresses tumor growth and metastasis in a murine model of cutaneous SCC through modulation of MAPK/AP-1 activation. Am J Pathol 182:992–1004

    Article  CAS  Google Scholar 

  51. Lin MI, Yu J, Murata T, Sessa WC (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856

    Article  CAS  Google Scholar 

  52. Lisanti MP, Martinez-Outschoorn UE, Sotgia F (2013) Oncogenes induce the cancer-associated fibroblast phenotype: metabolic symbiosis and "fibroblast addiction" are new therapeutic targets for drug discovery. Cell Cycle 12:2723–2732

    Article  CAS  Google Scholar 

  53. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    Article  CAS  Google Scholar 

  54. Celus W, Di Conza G, Oliveira AI, Ehling M, Costa BM, Wenes M, Mazzone M (2017) Loss of caveolin-1 in metastasis-associated macrophages drives lung metastatic growth through increased angiogenesis. Cell Rep 21:2842–2854

    Article  CAS  Google Scholar 

  55. Qian N, Ueno T, Kawaguchi-Sakita N, Kawashima M, Yoshida N, Mikami Y, Wakasa T, Shintaku M, Tsuyuki S, Inamoto T, Toi M (2011) Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci 102:1590–1596

    Article  CAS  Google Scholar 

  56. Kamposioras K, Tsimplouli CV, Anthoney A, Daoukopoulou A, Papandreou CN, Sakellaridis N, Vassilopoulos G, Potamianos SP, Liakouli V, Migneco G, Del Galdo F, Dimas K (2019) Silencing of caveolin-1 in fibroblasts as opposed to epithelial tumor cells results in increased tumor growth rate and chemoresistance in a human pancreatic cancer model. Int J Oncol 54:537–549

    CAS  Google Scholar 

  57. Liang YN, Liu Y, Wang L, Yao G, Li X, Meng X, Wang F, Li M, Tong D, Geng J (2018) Combined caveolin-1 and epidermal growth factor receptor expression as a prognostic marker for breast cancer. Oncol Lett 15:9271

    Google Scholar 

  58. Alshenawy HA, Ali MA (2013) Differential caveolin-1 expression in colon carcinoma and its relation to E-cadherin-β-catenin complex. Ann Diagn Pathol 17:476–482

    Article  Google Scholar 

  59. Di Vizio D, Morello M, Sotgia F, Pestell RG, Freeman MR, Lisanti MP (2009) An absence of stromal caveolin-1 is associated with advanced prostate cancer, metastatic disease and epithelial Akt activation. Cell Cycle 8:2420–2424

    Article  Google Scholar 

  60. Kim S, Lee Y, Seo JE, Cho KH, Chung JH (2008) Caveolin-1 increases basal and TGF-beta1-induced expression of type I procollagen through PI-3 kinase/Akt/mTOR pathway in human dermal fibroblasts. Cell Signal 20:1313–1319

    Article  CAS  Google Scholar 

  61. Wang S, Wang N, Zheng Y, Zhang J, Zhang F, Wang Z (2017) Caveolin-1: an oxidative stress-related target for cancer prevention. Oxid Med Cell Longev 2017:7454031

    Google Scholar 

  62. Yamao T, Yamashita YI, Yamamura K, Nakao Y, Tsukamoto M, Nakagawa S, Okabe H, Hayashi H, Imai K, Baba H (2019) Cellular senescence, represented by expression of caveolin-1, in cancer-associated fibroblasts promotes tumor invasion in pancreatic cancer. Ann Surg Oncol 26:1552–1559

    Article  Google Scholar 

  63. Eliyatkin N, Aktas S, Diniz G, Ozgur HH, Ekin ZY, Kupelioglu A (2018) Expression of stromal caveolin-1 may be a predictor for aggressive behaviour of breast cancer. Pathol Oncol Res 24:59–65

    Article  CAS  Google Scholar 

  64. Shimizu K, Kirita K, Aokage K, Kojima M, Hishida T, Kuwata T, Fujii S, Ochiai A, Funai K, Yoshida J, Tsuboi M, Ishii G (2017) Clinicopathological significance of caveolin-1 expression by cancer-associated fibroblasts in lung adenocarcinoma. J Cancer Res Clin Oncol 143:321–328

    Article  CAS  Google Scholar 

  65. Frank PG, Woodman SE, Park DS, Lisanti MP (2003) Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 23:1161–1168

    Article  CAS  Google Scholar 

  66. DeWever J, Frerart F, Bouzin C, Baudelet C, Ansiaux R, Sonveaux P, Gallez B, Dessy C, Feron O (2007) Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 171:1619–1628

    Article  CAS  Google Scholar 

  67. Xu H, Zhang L, Chen W, Xu J, Zhang R, Liu R, Zhou L, Hu W, Ju R, Lee C, Lu W, Kumar A, Li X, Tang Z (2017) Inhibitory effect of caveolin-1 in vascular endothelial cells, pericytes and smooth muscle cells. Oncotarget 8:76165–76173

    Article  Google Scholar 

  68. Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307:C25–C38

    Article  CAS  Google Scholar 

  69. Sundberg C, Friman T, Hecht LE, Kuhl C, Solomon KR (2009) Two different PDGF-receptor cohorts in human pericytes mediate distinct biological endpoints. Am J Pathol 175:171–189

    Article  CAS  Google Scholar 

  70. Fu Y, Moore XL, Lee MK, Fernández-Rojo MA, Parat MO, Parton RG, Meikle PJ, Sviridov D, Chin-Dusting JP (2012) Caveolin-1 plays a critical role in the differentiation of monocytes into macrophages. Arterioscler Thromb Vasc Biol 32:e117–e125

    CAS  Google Scholar 

  71. Takamura N, Yamaguchi Y, Watanabe Y, Asami M, Komitsu N, Aihara M (2019) Downregulated Caveolin-1 expression in circulating monocytes may contribute to the pathogenesis of psoriasis. Sci Rep 9:125

    Article  CAS  Google Scholar 

  72. Jiang E, Xu Z, Wang M, Yan T, Huang C, Zhou X, Liu Q, Wang L, Chen Y, Wang H, Liu K, Shao Z, Shang Z (2019) Tumoral microvesicle-activated glycometabolic reprogramming in fibroblasts promotes the progression of oral squamous cell carcinoma. FASEB J 33:5690–5703

    Article  CAS  Google Scholar 

  73. Sotgia F, Martinez-Outschoorn UE, Pavlides S, Howell A, Pestell RG, Lisanti MP (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 13:213

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the Global Core Research Center (GCRC) grant (No. 2011-0030001) from the National Research Foundation (NRF) of Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Joon Surh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yoon, HJ., Surh, YJ. (2020). Modulation of Cancer Cell Growth and Progression by Caveolin-1 in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment . Advances in Experimental Medicine and Biology, vol 1277. Springer, Cham. https://doi.org/10.1007/978-3-030-50224-9_4

Download citation

Publish with us

Policies and ethics