Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 207 Accesses

Abstract

High energy physics is devoted to exploring the fundamental structure of the physical world and studying the basic laws that govern our universe. By means of particle collisions, we have been able to investigate initially the structure of an atom, then discover the nucleus and subsequently a variety of new particles and their interactions. For example, with the world’s highest-energy (7 TeV) particle collider, the Large Hadron Collider (LHC, Fig. 1.1a) built at CERN (the European Organization for Nuclear Research), the Higgs Boson was discovered in 2012 [1, 2]. The larger energies the colliding particles possess, the more new particles can be created and physics can be studied. In addition, as leptons are point-like and fundamental objects, a significantly cleaner collision environment is achievable in lepton colliders in comparison with hadron colliders and hence higher precision for physics measurements. As a result, it is widely held that the next energy frontier colliders should collide electrons and positrons in the Teraelectronvolt (TeV, \(10^{12}\) eV) scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aad G, Abajyan T, Abbott B, Abdallah J, Khalek SA, Abdelalim A, Abdinov O, Aben R, Abi B, Abolins M et al (2012) Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys Lett B 716(1):1–29

    ADS  Google Scholar 

  2. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Aguilo E, Bergauer T, Dragicevic M, Ero J, Fabjan C et al (2012) Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys Lett B 716(1):30–61

    ADS  Google Scholar 

  3. Aicheler M, Burrows P, Draper M, Garvey T, Lebrun P, Peach K, Phinney N, Schmickler H, Schulte D, Toge N (2014) A multi-TeV linear collider based on CLIC technology: CLIC conceptual design report. Technical Report, SLAC national accelerator lab., Menlo Park, CA (United States)

    Google Scholar 

  4. Humphries S (2013) Principles of charged particle acceleration. Courier Corporation

    Google Scholar 

  5. Lee S-Y (2011) Accelerator physics. World Scientific Publishing Company, Singapore

    Google Scholar 

  6. Adolphsen C, BaroneM, Barish B, Buesser K, Burrows P, Carwardine J, Clark J, Durand HM, Dugan G, Elsen E et al (2013) The international linear collider technical design report-volume 3. II: Accelerator baseline design. arXiv:1306.6328

  7. Fitzpatrick R (1998) Introduction to plasma physics, Lecture notes

    Google Scholar 

  8. Tajima T, Dawson J (1979) Laser electron accelerator. Phys Rev Lett 43(4):267

    ADS  Google Scholar 

  9. Esarey E, Sprangle P, Krall J, Ting A (1996) Overview of plasma-based accelerator concepts. IEEE Trans Plasma Sci 24(2):252–288

    ADS  Google Scholar 

  10. Andreev N (1992) Resonant excitation of wakefields by a laser pulse. JETP lett 55(10):571–576

    ADS  Google Scholar 

  11. Krall J, Ting A, Esarey E, Sprangle P (1993) Enhanced acceleration in a self-modulated-laser wake-field accelerator. Phys Rev E 48(3):2157

    ADS  Google Scholar 

  12. Strickland D, Mourou G (1985) Compression of amplified chirped optical pulses. Opt Commun 55(6):447–449

    ADS  Google Scholar 

  13. Maine P, Strickland D, Bado P, Pessot M, Mourou G (1988) Generation of ultrahigh peak power pulses by chirped pulse amplification. IEEE J Quantum Electron 24(2):398–403

    ADS  Google Scholar 

  14. Mourou GA, Barty C, Perry MD (1998) Ultrahigh-intensity lasers: physics of the extreme on a tabletop. Phys Today 51(1):22–28

    ADS  Google Scholar 

  15. Mora P, Antonsen TM Jr (1996) Electron cavitation and acceleration in the wake of an ultraintense, self-focused laser pulse. Phys Rev E 53(3):R2068

    ADS  Google Scholar 

  16. Pukhov A, Meyer-ter Vehn J (2002) Laser wake field acceleration: the highly non-linear broken-wave regime. Appl Phys B 74(4–5):355–361

    ADS  Google Scholar 

  17. Faure J, Glinec Y, Pukhov A, Kiselev S, Gordienko S, Lefebvre E, Rousseau J-P, Burgy F, Malka V (2004) A laser plasma accelerator producing monoenergetic electron beams. Nature 431(7008):541

    ADS  Google Scholar 

  18. Geddes C, Toth C, Van Tilborg J, Esarey E, Schroeder C, Bruhwiler D, Nieter C, Cary J, Leemans W (2004) High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431(7008):538

    ADS  Google Scholar 

  19. Mangles SP, Murphy C, Najmudin Z, Thomas AGR, Collier J, Dangor AE, Divall E, Foster P, Gallacher J, Hooker C et al (2004) Monoenergetic beams of relativistic electrons from intense laser plasma interactions. Nature 431(7008):535

    ADS  Google Scholar 

  20. Hooker SM (2013) Developments in laser-driven plasma accelerators. Nat Photonics 7(10):775

    ADS  Google Scholar 

  21. Leemans WP, Nagler B, Gonsalves AJ, Toth C, Nakamura K, Geddes CG, Esarey E, Schroeder C, Hooker S (2006) GeV electron beams from a centimetre-scale accelerator. Nat Phys 2(10):696

    Google Scholar 

  22. Leemans W, Gonsalves A, Mao H-S, Nakamura K, Benedetti C, Schroeder C, Toth C, Daniels J, Mittelberger D, Bulanov S et al (2014) Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys Rev Lett 113(24):245002

    ADS  Google Scholar 

  23. Esarey E, Schroeder C, Leemans W (2009) Physics of laser-driven plasmabased electron accelerators. Rev Mod Phys 81(3):1229

    ADS  Google Scholar 

  24. Rosenbluth M, Liu C (1972) Excitation of plasma waves by two laser beams. Phys Rev Lett 29(11):701

    ADS  Google Scholar 

  25. Chiou T, Katsouleas T, Decker C, Mori W, Wurtele J, Shvets G, Su J (1995) Laser wake-field acceleration and optical guiding in a hollow plasma channel. Phys Plasmas 2(1):310–318

    ADS  Google Scholar 

  26. Cros B (2016) Plasma physics: compact coupling for a two-stage accelerator. Nature 530(7589):165

    ADS  Google Scholar 

  27. Steinke S, Van Tilborg J, Benedetti C, Geddes C, Schroeder C, Daniels J, Swanson K, Gonsalves A, Nakamura K, Matlis N et al (2016) Multistage coupling of independent laser-plasma accelerators. Nature 530(7589):190

    ADS  Google Scholar 

  28. Kudryavtsev A, Lotov K, Skrinsky A (1998) Plasma wake-field acceleration of high energies: physics and perspectives. Nucl Instrum Methods Phys Res Sect A 410(3):388–395

    ADS  Google Scholar 

  29. Rosenzweig J, Barov N, Murokh A, Colby E, Colestock P (1998) Towards a plasma wake-field acceleration-based linear collider. Nucl Instrum Methods Phys Res Sect A 410(3):532–543

    ADS  Google Scholar 

  30. Shiltsev VD (2012) High-energy particle colliders: past 20 years, next 20 years, and beyond. Physics-Uspekhi 55(10):965

    ADS  Google Scholar 

  31. Chen P, Dawson J, Hufi RW, Katsouleas T (1985) Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys Rev Lett 54(7):693

    ADS  Google Scholar 

  32. Lee S, Katsouleas T, Hemker R, Dodd E, Mori W (2001) Plasmawake field acceleration of a positron beam. Phys Rev E 64(4):045501

    ADS  Google Scholar 

  33. Rosenzweig J (1987) Nonlinear plasma dynanics in the plasma wakefield accelerator. IEEE Trans Plasma Sci 15(2):186–191

    ADS  Google Scholar 

  34. Rosenzweig J, Breizman B, Katsouleas T, Su J (1991) Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields. Phys Rev A 44(10):R6189

    ADS  Google Scholar 

  35. Ruth RD, Morton P, Wilson PB, Chao A (1984) A plasma wake field accelerator. Part Accel 17(SLAC-PUB-3374):171

    Google Scholar 

  36. Bane KL, Chen P, Wilson P (1985) Collinear wake field acceleration. Technical Report, Stanford Linear Accelerator Center, CA (USA)

    Google Scholar 

  37. Katsouleas TC, Wilks S, Chen P, Dawson JM, Su JJ (1987) Beam loading in plasma accelerators. Part Accel 22:81–99

    Google Scholar 

  38. Hogan M, Clayton C, Huang C, Muggli P, Wang S, Blue B, Walz D, Marsh K, O’Connell C, Lee S et al (2003) Ultrarelativistic-positron-beam transport through meter-scale plasmas. Phys Rev Lett 90(20):205002

    ADS  Google Scholar 

  39. Muggli P, Blue B, Clayton C, Deng S, Decker F-J, Hogan M, Huang C, Iverson R, Joshi C, Katsouleas T et al (2004) Meter-scale plasma-wake field accelerator driven by a matched electron beam. Phys Rev Lett 93(1):014802

    ADS  Google Scholar 

  40. Lu W, Huang C, Zhou M, Mori W, Katsouleas T (2005) Limits of linear plasma wakefield theory for electron or positron beams. Phys Plasmas 12(6):063101

    ADS  Google Scholar 

  41. Muggli P, Hogan MJ (2009) Review of high-energy plasma wake field experiments. C R Phys 10(2–3):116–129

    ADS  Google Scholar 

  42. Blumenfeld I, Clayton CE, Decker F-J, Hogan MJ, Huang C, Ischebeck R, Iverson R, Joshi C, Katsouleas T, Kirby N et al (2007) Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445(7129):741

    ADS  Google Scholar 

  43. Litos M, Adli E, An W, Clarke C, Clayton C, Corde S, Delahaye J, England R, Fisher A, Frederico J et al (2014) High-efficiency acceleration of an electron beam in a plasma wake field accelerator. Nature 515(7525):92

    ADS  Google Scholar 

  44. Corde S, Adli E, Allen J, An W, Clarke C, Clayton C, Delahaye J, Frederico J, Gessner S, Green S et al (2015) Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524(7566):442

    ADS  Google Scholar 

  45. Blue BE, Clayton C, O’connell C, Decker F-J Hogan M, Huang C, Iverson R, Joshi C, Katsouleas T, Lu W et al (2003) Plasma-wakefield acceleration of an intense positron beam. Phys Rev Lett 90(21):214801

    Google Scholar 

  46. Hogan M, Barnes C, Clayton C, Decker F, Deng S, Emma P, Huang C, Iverson R, Johnson D, Joshi C et al (2005) Multi-GeV energy gain in a plasma-wake field accelerator. Phys Rev Lett 95(5):054802

    ADS  Google Scholar 

  47. Wang X, Muggli P, Katsouleas T, Joshi C, Mori W, Ischebeck R, Hogan M (2009) Optimization of positron trapping and acceleration in an electronbeam-driven plasma wakefield accelerator. Phys Rev ST Accel Beams 12(5):051303

    ADS  Google Scholar 

  48. Lee S, Katsouleas T, Muggli P, Mori W, Joshi C, Hemker R, Dodd E, Clayton C, Marsh K, Blue B et al (2002) Energy doubler for a linear collider. Phys Rev ST Accel Beams 5(1):011001

    ADS  Google Scholar 

  49. Chen P, Su J, Dawson J, Bane KLF, Wilson P (1986) Energy transfer in the plasma wake-field accelerator. Phys Rev Lett 56(12):1252

    ADS  Google Scholar 

  50. Farmer J, Martorelli R, Pukhov A (2015) Transformer ratio saturation in a beam-driven wakefield accelerator. Phys Plasmas 22(12):123113

    ADS  Google Scholar 

  51. Caldwell A, Adli E, Amorim L, Apsimon R, Argyropoulos T, Assmann R, Bachmann A-M, Batsch F, Bauche J, Olsen VB et al (2016) Path to AWAKE: evolution of the concept. Nucl Instrum Methods Phys Res Sect A 829:3–16

    ADS  Google Scholar 

  52. Danson C, Hillier D, Hopps N, Neely D (2015) Petawatt class lasers worldwide. High Power Laser Sci Eng 3:e3

    Google Scholar 

  53. Nakajima K, Deng A, Zhang X, Shen B, Liu J, Li R, Xu Z, Ostermayr T, Petrovics S, Klier C et al (2011) Operating plasma density issues on large-scale laser-plasma accelerators toward high-energy frontier. Phys Rev ST Accel Beams 14(9):091301

    ADS  Google Scholar 

  54. Schroeder C, Esarey E, Leemans W (2012) Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders. Phys Rev ST Accel Beams 15(5):051301

    ADS  Google Scholar 

  55. Schroeder C, Benedetti C, Esarey E, Leemans W (2016) Laser-plasmabased linear collider using hollow plasma channels. Nucl Instrum Methods Phys Res Sect A 829:113–116

    ADS  Google Scholar 

  56. Caldwell A, Lotov K, Pukhov A, Simon F (2009) Proton-driven plasmawake field acceleration. Nat Phys 5(5):363

    Google Scholar 

  57. Lotov K (2010) Simulation of proton driven plasma wakefield acceleration. Phys Rev ST Accel Beams 13(4):041301

    ADS  Google Scholar 

  58. Yi L, Shen B, Lotov K, Ji L, Zhang X, Wang W, Zhao X, Yu Y, Xu J, Wang X et al (2013) Scheme for proton-driven plasma-wake field acceleration of positively charged particles in a hollow plasma channel. Phys Rev ST Accel Beams 16(7):071301

    ADS  Google Scholar 

  59. Yi L, Shen B, Ji L, Lotov K, Sosedkin A, Wang W, Xu J, Shi Y, Zhang L, Xu Z et al (2014) Positron acceleration in a hollow plasma channel up to TeV regime Sci Rep 4:4171

    Google Scholar 

  60. Leemans W, Duarte R, Esarey E, Fournier S, Geddes C, Lockhart D, Schroeder C, Tfioth C, Vay J-L, Zimmermann S (2010) The BErkeley lab laser accelerator (BELLA): a 10 GeV laser plasma accelerator. AIP Conf Proc AIP 1299:3–11

    ADS  Google Scholar 

  61. Xia G, Caldwell A, Lotov K, Pukhov A, Kumar N, An W, Lu W, Mori W, Joshi C, Huang C et al (2010) Update of proton driven plasma wake-field acceleration. AIP Conf Proc AIP 1299:510–515

    ADS  Google Scholar 

  62. Caldwell A, Lotov K, Pukhov A, Xia G (2010) Plasma wake field excitation with a 24 GeV proton beam. Plasma Phys Control Fusion 53(1):014003

    ADS  Google Scholar 

  63. Caldwell A, Lotov K (2011) Plasma wakefield acceleration with a modulated proton bunch. Phys Plasmas 18(10):103101

    ADS  Google Scholar 

  64. Lotov K (1998) Instability of long driving beams in plasma wake field accelerators. In: Proceedings of the 6th European particle accelerator conference, Stockholm, pp 806–808

    Google Scholar 

  65. Kumar N, Pukhov A, Lotov K (2010) Self-modulation instability of a long proton bunch in plasmas. Phys Rev Lett 104(25):255003

    ADS  Google Scholar 

  66. Krall J, Joyce G (1995) Transverse equilibrium and stability of the primary beam in the plasma wake-field accelerator. Phys Plasmas 2(4):1326–1331

    ADS  Google Scholar 

  67. Whittum DH (1997) Transverse two-stream instability of a beam with a bennett profile. Phys Plasmas 4(4):1154–1159

    ADS  Google Scholar 

  68. Lotov K (2011) Controlled self-modulation of high energy beams in a plasma. Phys Plasmas 18(2):024501

    ADS  Google Scholar 

  69. Lotov K (2015) Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators. Phys Plasmas 22(12):123107

    ADS  Google Scholar 

  70. Lotov K (2015) Physics of beam self-modulation in plasma wake field accelerators. Phys Plasmas 22(10):103110

    ADS  Google Scholar 

  71. Schroeder C, Benedetti C, Esarey E, Gruner F, Leemans W (2012) Coupled beam hose and self-modulation instabilities in overdense plasma. Phys Rev E 86(2):026402

    ADS  Google Scholar 

  72. Schroeder C, Benedetti C, Esarey E, Gruner F, Leemans W (2013) Coherent seeding of self-modulated plasma wakefield accelerators. Phys Plasmas 20(5):056704

    ADS  Google Scholar 

  73. Vieira J, Mori W, Muggli P (2014) Hosing instability suppression in selfmodulated plasma wakefields. Phys Rev Lett 112(20):205001

    ADS  Google Scholar 

  74. Assmann R, Bingham R, Bohl T, Bracco C, Buttenschon B, Butterworth A, Caldwell A, Chattopadhyay S, Cipiccia S, Feldbaumer E et al (2014) Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics. Plasma Phys Control Fusion 56(8):084013

    ADS  Google Scholar 

  75. Bracco C, Gschwendtner E, Petrenko A, Timko H, Argyropoulos T, Bartosik H, Bohl T, Muller JE, Goddard B, Meddahi M et al (2014) Beam studies and experimental facility for the AWAKE experiment at CERN. Nucl Instrum Methods Phys Res Sect A 740:48–53

    ADS  Google Scholar 

  76. Gschwendtner E, Adli E, Amorim L, Apsimon R, Assmann R, Bachmann A-M, Batsch F, Bauche J, Olsen VB, Bernardini M et al (2016) AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN. Nucl Instrum Methods Phys Res Sect A 829:76–82

    ADS  Google Scholar 

  77. Turner M et al (AWAKE Collaboration) (2019) Experimental observation of plasma wakefield growth driven by the seeded self-modulation of a proton bunch. Phys Rev Lett 122(5):054801

    Google Scholar 

  78. Adli E et al (AWAKE Collaboration) (2019) Experimental observation of proton bunch modulation in a plasma, at varying plasma densities. Phys Rev Lett 122(5):054802

    Google Scholar 

  79. Adli E, Ahuja A, Apsimon O, Apsimon R, Bachmann A-M, Barrientos D, Batsch F, Bauche J, Olsen VB, Bernardini M et al (2018) Acceleration of electrons in the plasma wakefield of a proton bunch. Nature 561(7723):363

    ADS  Google Scholar 

  80. Fang Y, Vieira J, Amorim L, Mori W, Muggli P (2014) The effect of plasma radius and profile on the development of self-modulation instability of electron bunches. Phys Plasmas 21(5):056703

    ADS  Google Scholar 

  81. Fang Y, Yakimenko V, Babzien M, Fedurin M, Kusche K, Malone R, Vieira J, Mori W, Muggli P (2014) Seeding of self-modulation instability of a long electron bunch in a plasma. Phys Rev Lett 112(4):045001

    ADS  Google Scholar 

  82. Vieira J, Fang Y, Mori W, Silva L, Muggli P (2012) Transverse selfmodulation of ultra-relativistic lepton beams in the plasma wake field accelerator. Phys Plasmas 19(6):063105

    ADS  Google Scholar 

  83. Gross M, Brinkmann R, Good J, Gruner F, Khojoyan M, de la Ossa AM, Osterhofi J, Pathak G, Schroeder C, Stephan F (2014) Preparations for a plasma wakefield acceleration (PWA) experiment at PITZ. Nucl Instrum Methods Phys Res Sect A 740:74–80

    ADS  Google Scholar 

  84. Lishilin O, Gross M, Brinkmann R, Engel J, Gruner F, Koss G, Krasilnikov M, de la Ossa AM, Mehrling T, Osterhofi J et al (2016) First results of the plasma wake field acceleration experiment at PITZ. Nucl Instrum Methods Phys Res Sect A 829:37–42

    ADS  Google Scholar 

  85. Adli E, Olsen VB, Lindstrfim C, Muggli P, Reimann O, Vieira J, Amorim L, Clarke C, Gessner S, Green S et al (2016) Progress of plasma wake-field self-modulation experiments at FACET. Nucl Instrum Methods Phys Res Sect A 829:334–338

    ADS  Google Scholar 

  86. Apsimon OM, Burt G, Hanahoe K, Xia G Hidding B (2010) iMPACT, undulator-based multi-bunch plasma accelerator. In: Proceedings of international particle accelerator conference (IPAC), Busan, Korea, p 2609

    Google Scholar 

  87. Pompili R, Anania M, Bellaveglia M, Biagioni A, Bisesto F, Chiadroni E, Cianchi A, Croia M, Curcio A, Di Giovenale D et al (2016) Beam manipulation with velocity bunching for PWFA applications. Nucl Instrum Methods Phys Res Sect A 829:17–23

    ADS  Google Scholar 

  88. Herr W, Muratori B (2006) Concept of luminosity. CERN Accelerator School Intermediate accelerator physics, p 361

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangmei Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y. (2020). Introduction. In: Studies of Proton Driven Plasma Wakefield Acceleration. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-50116-7_1

Download citation

Publish with us

Policies and ethics