Skip to main content

Approximation Methods for Monte Carlo Tree Search

  • 479 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1156)

Abstract

Today planning algorithms are among the most sought after. One of the main such algorithms is Monte Carlo Tree Search. However, this architecture is complex in terms of parallelization and development. We presented possible approximations for the MCTS algorithm, which allowed us to significantly increase the learning speed of the agent.

Keywords

  • Reinforcement learning
  • Monte-Carlo tree search
  • Neural network approximation
  • Deep learning

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-50097-9_8
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-50097-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Sutton, R.S.: Dyna, an integrated architecture for learning, planning, and reacting. SIGART Bull. 2(4), 160–163 (1991)

    CrossRef  Google Scholar 

  2. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: International Conference on Computers and Games, pp. 72–83. Springer (2006)

    Google Scholar 

  3. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354 (2017)

    CrossRef  Google Scholar 

  4. Kocsis, L., Szepesvári, C.: Bandit based monte-carlo planning. In: European Conference on Machine Learning, pp. 282–293. Springer (2006)

    Google Scholar 

  5. Gelly, S., Silver, D.: Monte-carlo tree search and rapid action value estimation in computer go. Artif. Intell. 175(11), 1856–1875 (2011)

    MathSciNet  CrossRef  Google Scholar 

  6. Lecarpentier, E., Infantes, G., Lesire, C., Rachelson, E.: Open loop execution of tree-search algorithms. arXiv preprint arXiv:1805.01367 (2018)

  7. Guez, A., Weber, T., Antonoglou, I., Simonyan, K., Vinyals, O., Wierstra, D., Munos, R., Silver, D.: Learning to search with MCTSNets. arXiv preprint arXiv:1802.04697 (2018)

  8. Racanière, S., Weber, T., Reichert, D., Buesing, L., Guez, A., Rezende, D.J., Badia, A.P., Vinyals, O., Heess, N., Li, Y., et al.: Imagination-augmented agents for deep reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 5690–5701 (2017)

    Google Scholar 

  9. Chaslot, G.M.J.-B., Winands, M.H.M., van Den Herik, H.J.: Parallel monte-carlo tree search. In: International Conference on Computers and Games, pp. 60–71. Springer (2008)

    Google Scholar 

  10. Ali Mirsoleimani, S., Plaat, A., van den Herik, J., Vermaseren, J.: A new method for parallel Monte Carlo tree search. arXiv preprint arXiv:1605.04447 (2016)

  11. Schrader, M.-P.B.: gym-sokoban (2018). https://github.com/mpSchrader/gym-sokoban

  12. Edelkamp, S., Gath, M., Greulich, C., Humann, M., Herzog, O., Lawo, M.: Monte-Carlo tree search for logistics. In: Commercial Transport, pp. 427–440. Springer (2016)

    Google Scholar 

Download references

Acknowledgements

The reported study was supported by RFBR, research Projects No. 17-29-07079 and No. 18-29-22047.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr I. Panov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Aksenov, K., Panov, A.I. (2020). Approximation Methods for Monte Carlo Tree Search. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-030-50097-9_8

Download citation