Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-time dynamic programming. Artif. Intell. 72(1–2), 81–138 (1995)
CrossRef
Google Scholar
Bogdoll, J., Ferrer Fioriti, L.M., Hartmanns, A., Hermanns, H.: Partial order methods for statistical model checking and simulation. In: Bruni, R., Dingel, J. (eds.) FMOODS/FORTE -2011. LNCS, vol. 6722, pp. 59–74. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21461-5_4
CrossRef
Google Scholar
Bonet, B., Geffner, H.: Labeled RTDP: improving the convergence of real-time dynamic programming, In: ICAPS, pp. 12–21 (2003)
Google Scholar
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31(1), 59–75 (1994)
MathSciNet
CrossRef
Google Scholar
Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: A statistical model checker for nondeterminism and rare events. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 340–358. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_20
CrossRef
Google Scholar
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9
CrossRef
Google Scholar
Croce, F., Andriushchenko, M., Hein, M.: Provable robustness of RELU networks via maximization of linear regions, In: AISTATS. pp. 2057–2066. PMLR 89 (2019)
Google Scholar
David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_27
CrossRef
Google Scholar
Dehnert, C., Junges, S., Katoen, J.-P., Volk, M.: A Storm is Coming: A Modern Probabilistic Model Checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9_31
CrossRef
Google Scholar
Ehlers, R.: Formal Verification of Piece-Wise Linear Feed-Forward Neural Networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19
CrossRef
Google Scholar
Gardner, M.: Mathematical games. Sci. Am. 229, 118–121 (1973)
CrossRef
Google Scholar
Gardner, M., Dorling, S.: Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric Environ. 32(14), 2627–2636 (1998)
CrossRef
Google Scholar
Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.T.: AI2: Safety and robustness certification of neural networks with abstract interpretation. IEEE Sympos. Secur. Privacy 2018, 3–18 (2018)
Google Scholar
Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Models and Infrastructure used in “Deep Statistical Model Checking” (2020). https://doi.org/10.5281/zenodo.3760098
Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasMc: a web-based probabilistic model checker. In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS, vol. 8442, pp. 312–317. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06410-9_22
CrossRef
Google Scholar
Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Asp. Comput. 6(5), 512–535 (1994)
CrossRef
Google Scholar
Hartmanns, A.: On the analysis of stochastic timed systems. Ph.D. thesis, Saarland University, Germany (2015)
Google Scholar
Hartmanns, A., Hermanns, H.: The modest toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51
CrossRef
Google Scholar
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_20
CrossRef
Google Scholar
Hérault, T., Lassaigne, R., Magniette, F., Peyronnet, S.: Approximate probabilistic model checking. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 73–84. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24622-0_8
CrossRef
MATH
Google Scholar
Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)
CrossRef
Google Scholar
Hornik, K., Stinchcombe, M.B., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)
CrossRef
Google Scholar
Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1
CrossRef
Google Scholar
The JANI specification. http://www.jani-spec.org/. Accessed 28 Feb 2020
Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5
CrossRef
Google Scholar
Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Compiling probabilistic model checking into probabilistic planning. In: ICAPS, pp. 150–154 (2018)
Google Scholar
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1097–1105 (2012)
Google Scholar
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
CrossRef
Google Scholar
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0_6
CrossRef
Google Scholar
Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23
CrossRef
Google Scholar
Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with symbolic propagation: towards higher precision and faster verification. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296–319. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32304-2_15
CrossRef
Google Scholar
McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes. In: ICAPS, pp. 151–160 (2005)
Google Scholar
Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015)
CrossRef
Google Scholar
Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Ann. inst. Stat. Math. 10(1), 29–35 (1959)
MathSciNet
CrossRef
Google Scholar
Parker, D.A.: Implementation of symbolic model checking for probabilistic systems. Ph.D. thesis, University of Birmingham, UK (2003)
Google Scholar
Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under uncertainty. In: IJCAI, pp. 2350–2356 (2013)
Google Scholar
Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models: revisiting determinization. In: ICAPS, 217–225 (2014)
Google Scholar
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, Hoboken (1994)
Google Scholar
Sarle, W.S.: Neural networks and statistical models (1994)
Google Scholar
Silver, D., et al.: A general reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science 362(6419), 1140–1144 (2018)
MathSciNet
CrossRef
Google Scholar
Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Stat. 16(2), 117–186 (1945)
MathSciNet
CrossRef
Google Scholar
Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_22
CrossRef
Google Scholar
Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_17
CrossRef
MATH
Google Scholar