Skip to main content

Isomorphic Distances Among Elections

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

Abstract

This paper is an invitation to study the problem of measuring distances between elections, for the case where both the particular names of the candidates and the voters are irrelevant. In other words, we say that two elections are at distance zero (or, that they are isomorphic) if it is possible to make them identical by renaming their candidates and voters, and we are interested in measuring how far are two given elections from being isomorphic. The study of such distances has just begun and in this paper we outline why we believe that it is interesting and what are the natural research directions.

Piotr Faliszewski was supported by the funds of the Polish Ministry of Science and Higher Education assigned to AGH University. Piotr Skowron was supported by the Foundation for Polish Science (Homing programme). Arkadii Slinko was supported by Marsden Fund grant 3706352 of The Royal Society of New Zealand. Stanisław Szufa was supported by NCN project 2018/29/N/- ST6/01303. Nimrod Talmon was supported by the Israel Science Foundation (grant No. 630/19).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The references here are just examples giving pointers to both classic and new works.

  2. 2.

    Thus we are effectively interested in pseudodistances over elections. We will, however, typically omit the “pseudo” prefix to maintain simplicity of our writing.

  3. 3.

    One can verify that, indeed, Definition 3 provides functions \({d\hbox {-}\mathrm {ID}}\) that satisfy the requirements of (pseudo)distances. Further, one can also verify that the Diaconis-Graham inequality also holds for \({d_{{\mathrm {swap}}}\hbox {-}\mathrm {ID}}\) and \({d_{{\mathrm {Spear}}}\hbox {-}\mathrm {ID}}\).

  4. 4.

    We thank Gerhard Woeginger for suggesting this idea.

  5. 5.

    This follows from the fact that being able to compute \({d_{{\mathrm {swap}}}\hbox {-}\mathrm {ID}}\) implies the ability to compute Kemeny rankings, and this problem is \({{\mathrm {NP}}}\)-hard already for four voters [11]; see also the results of Bartholdi et al. [4] and Hemaspaandra et al. [26].

  6. 6.

    These approximation algorithms, however, would have to have approximation ratios very close to 1 if the computed distances were to be meaningful.

  7. 7.

    We thank Tuomas W. Sandholm for suggesting this idea.

References

  1. Arvind, V., Köbler, J., Kuhnert, S., Vasudev, Y.: Approximate graph isomorphism. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 100–111. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_12

    Chapter  Google Scholar 

  2. Babai, L., Dawar, A., Schweitzer, P., Torán, J.: The graph isomorphism problem (Dagstuhl seminar 15511). Dagstuhl Rep. 5(12), 1–17 (2015)

    Google Scholar 

  3. Bartholdi III, J., Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Soc. Choice Welfare 6(3), 227–241 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bartholdi III, J., Tovey, C., Trick, M.: Voting schemes for which it can be difficult to tell who won the election. Soc. Choice Welfare 6(2), 157–165 (1989)

    Article  MathSciNet  Google Scholar 

  5. Bartholdi III, J., Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput. Modeling 16(8/9), 27–40 (1992)

    Article  MathSciNet  Google Scholar 

  6. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook of Computational Social Choice. Cambridge University Press, Cambridge (2016)

    Google Scholar 

  7. Brandt, F., Geist, C., Strobel, M.: Analyzing the practical relevance of voting paradoxes via Ehrhart theory, computer simulations, and empirical data. In: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2016), pp. 385–393 (2016)

    Google Scholar 

  8. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., Talmon, N.: Robustness among multiwinner voting rules. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66700-3_7

    Chapter  Google Scholar 

  9. Conitzer, V., Sandholm, T., Lang, J.: When are elections with few candidates hard to manipulate? J. ACM 54(3), Article 14 (2007)

    Google Scholar 

  10. Diaconis, P., Graham, R.: Spearman’s footrule as a measure of disarray. J. Roy. Stat. Soc. Ser. B 39(2), 262–268 (1977)

    Google Scholar 

  11. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggregation methods for the web. In: Proceedings of the 10th International World Wide Web Conference (WWW-2001), pp. 613–622. ACM Press, March 2001

    Google Scholar 

  12. Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Mavronicolas, M., Papadopoulou, V.G. (eds.) SAGT 2009. LNCS, vol. 5814, pp. 299–310. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04645-2_27

    Chapter  Google Scholar 

  13. Elkind, E., Faliszewski, P., Slinko, A.: Distance rationalization of voting rules. Soc. Choice Welfare 45(2), 345–377 (2015). https://doi.org/10.1007/s00355-015-0892-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Elkind, E., Gan, J., Obraztsova, S., Rabinovich, Z., Voudouris, A.: Protecting elections by recounting ballots. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI-2019), pp. 259–265 (2019)

    Google Scholar 

  15. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: a theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)

    Article  MathSciNet  Google Scholar 

  16. Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: an experimental analysis. J. Comput. Syst. Sci. 81(4), 661–670 (2015)

    Article  MathSciNet  Google Scholar 

  17. Eğecioğlu, Ö., Giritligil, A.: The impartial, anonymous, and neutral culture model: a probability model for sampling public preference structures. J. Math. Sociol. 37(4), 203–222 (2013)

    Article  MathSciNet  Google Scholar 

  18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections? J. Artif. Intell. Res. 35, 485–532 (2009)

    Article  MathSciNet  Google Scholar 

  19. Faliszewski, P., Skowron, P., Slinko, A., Szufa, S., Talmon, N.: How similar are two elections? In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 1909–1916 (2019)

    Google Scholar 

  20. Faliszewski, P., Slinko, A., Stahl, K., Talmon, N.: Achieving fully proportional representation by clustering voters. J. Heurist. 24(5), 725–756 (2018). https://doi.org/10.1007/s10732-018-9376-y

    Article  Google Scholar 

  21. Fishburn, P.: Condorcet social choice functions. SIAM J. Appl. Math. 33(3), 469–489 (1977)

    Article  MathSciNet  Google Scholar 

  22. Goldsmith, J., Lang, J., Mattei, N., Perny, P.: Voting with rank dependent scoring rules. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI-2014), pp. 698–704 (2014)

    Google Scholar 

  23. Grohe, M., Rattan, G., Woeginger, G.: Graph similarity and approximate isomorphism. In: Proceedings of the 43rd International Symposium on Mathematical Foundations of Computer Science (MFCS-2018), pp. 20:1–20:16 (2018)

    Google Scholar 

  24. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Exact analysis of Dodgson elections: Lewis Carroll’s 1876 voting system is complete for parallel access to NP. J. ACM 44(6), 806–825 (1997)

    Article  MathSciNet  Google Scholar 

  25. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

    Article  MathSciNet  Google Scholar 

  26. Hemaspaandra, E., Spakowski, H., Vogel, J.: The complexity of Kemeny elections. Theoret. Comput. Sci. 349(3), 382–391 (2005)

    Article  MathSciNet  Google Scholar 

  27. Keller, O., Hassidim, A., Hazon, N.: New approximations for coalitional manipulation in scoring rules. J. Artif. Intell. Res. 64, 109–145 (2019)

    Article  MathSciNet  Google Scholar 

  28. Konicki, C., Vassilevska Williams, V.: Bribery in balanced knockout tournaments. In: Proceedings of the 18th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2019), pp. 2066–2068 (2019)

    Google Scholar 

  29. Mattei, N., Forshee, J., Goldsmith, J.: An empirical study of voting rules and manipulation with large datasets. In: Proceedings of the 4th International Workshop on Computational Social Choice (COMSOC-2012) (2012)

    Google Scholar 

  30. Mattei, N., Walsh, T.: Preflib: a library for preferences. In: Proceedings of the 3nd International Conference on Algorithmic Decision Theory (ADT-2013), pp. 259–270 (2013)

    Google Scholar 

  31. Meskanen, T., Nurmi, H.: Closeness counts in social choice. In: Braham, M., Steffen, F. (eds.) Power, Freedom, and Voting. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-73382-9_15

  32. Nitzan, S.: Some measures of closeness to unanimity and their implications. Theory Decis. 13(2), 129–138 (1981)

    Article  MathSciNet  Google Scholar 

  33. Procaccia, A., Rosenschein, J., Zohar, A.: On the complexity of achieving proportional representation. Soc. Choice Welfare 30(3), 353–362 (2008)

    Article  MathSciNet  Google Scholar 

  34. Redko, I., Vayer, T., Flamary, R., Courty, N.: Co-optimal transport. Technical report arXiv:2002.03731 [stat.ML], February 2020

  35. Shiryaev, D., Yu, L., Elkind, E.: On elections with robust winners. In: Proceedings of the 12th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2013), pp. 415–422 (2013)

    Google Scholar 

  36. Skowron, P., Faliszewski, P., Slinko, A.: Achieving fully proportional representation: approximability result. Artif. Intell. 222, 67–103 (2015)

    Article  MathSciNet  Google Scholar 

  37. Szufa, S., Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Drawing a map of elections in the space of statistical cultures. In: Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS-2020) (2020, to appear)

    Google Scholar 

  38. Tideman, T., Plassmann, F.: Modeling the outcomes of vote-casting in actual elections. In: Felsenthal, D., Machover, M. (eds.) Electoral Systems: Paradoxes, Assumptions, and Procedures, pp. 217–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-20441-8_9

  39. Walsh, T.: Where are the hard manipulation problems. J. Artif. Intell. Res. 42(1), 1–29 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Wang, J., Sikdar, S., Shepherd, T., Zhao, Z., Jiang, C., Xia, L.: Practical algorithms for multi-stage voting rules with parallel universes tiebreaking. In: Proceedings of the 33rd AAAI Conference on Artificial Intelligence (AAAI-2019), pp. 2189–2196 (2019)

    Google Scholar 

  41. Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC-2012), pp. 982–999. ACM Press, June 2012

    Google Scholar 

  42. Yin, Y., Vorobeychik, Y., An, B., Hazon, N.: Optimally protecting elections. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI-2016), pp. 538–545 (2016)

    Google Scholar 

Download references

Acknowledgments

Some of the discussions related to the ideas presented in this paper happened during Dagstuhl Seminar 19381.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Faliszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Faliszewski, P., Skowron, P., Slinko, A., Szufa, S., Talmon, N. (2020). Isomorphic Distances Among Elections. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics