Skip to main content

Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

  • 687 Accesses

Abstract

We consider a rearrangement problem of two-dimensional bicolor arrays by prefix reversals as a generalization of the burnt pancake problem. An equivalence relation on the set of bicolor arrays is induced by prefix reversals, and the rearrangement problem is to characterize the equivalence classes. While previously studied the rearrangement problem for unicolor arrays made use of the classical group theoretic tools, the present problem is quite different. For bicolor arrays a rearrangement can be described by partial injections, and thus we characterize the equivalence classes in terms of a groupoid action. We also outline an algorithm for rearrangement by prefix reversals and estimate a minimum number of rearrangements needed to rearrange bicolor arrays by prefix reversals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_17

    Chapter  Google Scholar 

  2. Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45749-6_21

    Chapter  Google Scholar 

  3. Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32589-2_24

    Chapter  Google Scholar 

  4. Chitturi, B., et al.: An \((18/11)n\) upper bound for rearranging by prefix reversals. Theoret. Comput. Sci. 410(36), 3372–3390 (2009)

    Article  MathSciNet  Google Scholar 

  5. Cohen, D.S., Blum, M.: On the problem of rearranging burnt pancakes. Discrete Appl. Math. 61(2), 105–120 (1995)

    Article  MathSciNet  Google Scholar 

  6. Gates, W., Papadimitriou, C.: Bounds for sorting by prefix reversal. Discrete Math. 79, 47–57 (1979)

    Article  MathSciNet  Google Scholar 

  7. Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J. Algorithms 25(1), 67–94 (1997)

    Article  MathSciNet  Google Scholar 

  8. Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. In: ACM-SIAM SODA 1997, pp. 178–187 (1997)

    Google Scholar 

  9. Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, Singapore (1998)

    Book  Google Scholar 

  10. Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New York (1994). https://doi.org/10.1007/978-1-4612-4176-8

    Book  Google Scholar 

  11. Yamamura, A.: Rearranging two dimensional arrays by prefix reversals. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 153–165. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24537-9_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Yamamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yamamura, A., Kase, R., Jajcayová, T.B. (2020). Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics