Advertisement

Groupoid Action and Rearrangement Problem of Bicolor Arrays by Prefix Reversals

  • Akihiro YamamuraEmail author
  • Riki Kase
  • Tatiana B. Jajcayová
Conference paper
  • 150 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12159)

Abstract

We consider a rearrangement problem of two-dimensional bicolor arrays by prefix reversals as a generalization of the burnt pancake problem. An equivalence relation on the set of bicolor arrays is induced by prefix reversals, and the rearrangement problem is to characterize the equivalence classes. While previously studied the rearrangement problem for unicolor arrays made use of the classical group theoretic tools, the present problem is quite different. For bicolor arrays a rearrangement can be described by partial injections, and thus we characterize the equivalence classes in terms of a groupoid action. We also outline an algorithm for rearrangement by prefix reversals and estimate a minimum number of rearrangements needed to rearrange bicolor arrays by prefix reversals.

Keywords

Groupoids Groupoid actions Rearrangement problem Burnt pancake problem Prefix reversals 

References

  1. 1.
    Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48523-6_17CrossRefGoogle Scholar
  2. 2.
    Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by reversals. In: Möhring, R., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45749-6_21CrossRefGoogle Scholar
  3. 3.
    Bulteau, L., Fertin, G., Rusu, I.: Pancake flipping is hard. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 247–258. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32589-2_24CrossRefGoogle Scholar
  4. 4.
    Chitturi, B., et al.: An \((18/11)n\) upper bound for rearranging by prefix reversals. Theoret. Comput. Sci. 410(36), 3372–3390 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cohen, D.S., Blum, M.: On the problem of rearranging burnt pancakes. Discrete Appl. Math. 61(2), 105–120 (1995)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gates, W., Papadimitriou, C.: Bounds for sorting by prefix reversal. Discrete Math. 79, 47–57 (1979)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Heydari, M.H., Sudborough, I.H.: On the diameter of the pancake network. J. Algorithms 25(1), 67–94 (1997)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Faster and simpler algorithm for sorting signed permutations by reversals. In: ACM-SIAM SODA 1997, pp. 178–187 (1997)Google Scholar
  9. 9.
    Lawson, M.V.: Inverse Semigroups: The Theory of Partial Symmetries. World Scientific, Singapore (1998)CrossRefGoogle Scholar
  10. 10.
    Rotman, J.J.: An Introduction to the Theory of Groups, 4th edn. Springer, New York (1994).  https://doi.org/10.1007/978-1-4612-4176-8CrossRefGoogle Scholar
  11. 11.
    Yamamura, A.: Rearranging two dimensional arrays by prefix reversals. In: Bojańczyk, M., Lasota, S., Potapov, I. (eds.) RP 2015. LNCS, vol. 9328, pp. 153–165. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24537-9_14CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Akihiro Yamamura
    • 1
    Email author
  • Riki Kase
    • 1
  • Tatiana B. Jajcayová
    • 2
  1. 1.Faculty of Engineering ScienceAkita UniversityAkitaJapan
  2. 2.Faculty of Mathematics, Physics and InformaticsComenius UniversityBratislavaSlovak Republic

Personalised recommendations