Skip to main content

Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Abstract

Fingerprinting and cryptographic hashing have quite different usages in computer science, but have similar properties. Interpretation of their properties is determined by the area of their usage: fingerprinting methods are methods for constructing efficient randomized and quantum algorithms for computational problems, while hashing methods are one of the central cryptographic primitives.

Fingerprinting and hashing methods are being developed from the mid of the previous century, while quantum fingerprinting and quantum hashing have a short history.

In the paper we present computational aspects of quantum fingerprinting, discuss cryptographic properties of quantum hashing. We investigate the pre-image resistance of this function and show that it reveals only O(1) bits of information about the input.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablayev, F., Ablayev, M.: On the concept of cryptographic quantum hashing. Laser Phys. Lett. 12(12), 125204 (2015). http://stacks.iop.org/1612-202X/12/i=12/a=125204

  2. Ablayev, F., Ablayev, M.: Quantum hashing via \(\epsilon \)-universal hashing constructions and classical fingerprinting. Lobachevskii J. Math. 36(2), 89–96 (2015). https://doi.org/10.1134/S199508021502002X

  3. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum branching programs. In: Freivalds, R. (ed.) FCT, vol. 2138, pp. 59–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44669-9_8, http://arxiv.org/abs/quant-ph/0302022

  4. Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on fingerprinting. Electron. Proc. Theoret. Comput. Sci. 9, 1–11 (2009). https://doi.org/10.4204/EPTCS.9.1, http://arxiv.org/abs/0911.2317

  5. Ablayev, F., Vasiliev, A.: Classical and quantum parallelism in the quantum fingerprinting method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_1

    Chapter  Google Scholar 

  6. Ablayev, F., Vasiliev, A.: On computational power of quantum read-once branching programs. Electron. Proc. Theoret. Comput. Sci. 52, 1–12 (2011). https://doi.org/10.4204/EPTCS.52.1

  7. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 025202 (2014). http://stacks.iop.org/1612-202X/11/i=2/a=025202

  8. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–284 (1994). https://doi.org/10.1002/rsa.3240050203

  9. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceeding of the 39th IEEE Conference on Foundation of Computer Science, FOCS 1998, pp. 332–342. IEEE Computer Society, Washington, DC (1998). https://doi.org/10.1109/SFCS.1998.743469, http://arxiv.org/abs/quant-ph/9802062

  10. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. In: Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communication, and Cryptography. LNCS, vol. 5106, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2_5, http://arxiv.org/abs/0805.1686

  11. Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric codes. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 191–197, October 2009. https://doi.org/10.1109/FOCS.2009.44

  12. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621. ACM, New York (2003). https://doi.org/10.1145/780542.780631

  13. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001). https://doi.org/10.1103/PhysRevLett.87.167902, www.arXiv.org/quant-ph/0102001v1

  14. Chen, S., Moore, C., Russell, A.: Small-bias sets for nonabelian groups. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. LNCS, vol. 8096, pp. 436–451. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6_31

  15. Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, vol. 839, p. 842 (1977)

    Google Scholar 

  16. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) Mathematical Foundations of Computer Science. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09526-8_5

  17. Gavinsky, D., Ito, T.: Quantum fingerprints that keep secrets. Technical report. Cornell University Library arXiv:quant-ph/1010.5342 (2010)

  18. Gottesman, D., Chuang, I.: Quantum digital signatures. Technical report. Cornell University Library arXiv:quant-ph/0105032 (2001)

  19. Holevo, A.S.: Some estimates of the information transmitted by quantum communication channel (Russian). Probl. Pered. Inform. [Probl. Inf. Transm.] 9(3), 3–11 (1973)

    Google Scholar 

  20. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013). https://doi.org/10.1007/s11128-012-0421-8

  21. Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013). https://doi.org/10.1007/s11128-012-0516-2

  22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 213–223. ACM, New York (1990). https://doi.org/10.1145/100216.100244

  24. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–376 (1999). https://doi.org/10.1109/SFFCS.1999.814608

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1 edn. Cambridge University Press, Cambridge (2000). https://doi.org/10.2277/0521635039

  26. Vasiliev, A.: Quantum hashing for finite abelian groups. Lobachevskii J. Math. 37(6), 753–757 (2016). https://doi.org/10.1134/S1995080216060184

    Article  MathSciNet  MATH  Google Scholar 

  27. de Wolf, R.: Quantum computing and communication complexity. Ph.D. thesis, University of Amsterdam (2001)

    Google Scholar 

  28. Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016). https://doi.org/10.1038/srep19788

Download references

Acknowledgments

The research was supported by the government assignment for FRC Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Ablayev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ablayev, F., Ablayev, M., Vasiliev, A. (2020). Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics