Abstract
Fingerprinting and cryptographic hashing have quite different usages in computer science, but have similar properties. Interpretation of their properties is determined by the area of their usage: fingerprinting methods are methods for constructing efficient randomized and quantum algorithms for computational problems, while hashing methods are one of the central cryptographic primitives.
Fingerprinting and hashing methods are being developed from the mid of the previous century, while quantum fingerprinting and quantum hashing have a short history.
In the paper we present computational aspects of quantum fingerprinting, discuss cryptographic properties of quantum hashing. We investigate the pre-image resistance of this function and show that it reveals only O(1) bits of information about the input.
Keywords
- Quantum computations
- Quantum cryptography
- Fingerprinting
- Hashing
This is a preview of subscription content, access via your institution.
Buying options
References
Ablayev, F., Ablayev, M.: On the concept of cryptographic quantum hashing. Laser Phys. Lett. 12(12), 125204 (2015). http://stacks.iop.org/1612-202X/12/i=12/a=125204
Ablayev, F., Ablayev, M.: Quantum hashing via \(\epsilon \)-universal hashing constructions and classical fingerprinting. Lobachevskii J. Math. 36(2), 89–96 (2015). https://doi.org/10.1134/S199508021502002X
Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum branching programs. In: Freivalds, R. (ed.) FCT, vol. 2138, pp. 59–70. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44669-9_8, http://arxiv.org/abs/quant-ph/0302022
Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on fingerprinting. Electron. Proc. Theoret. Comput. Sci. 9, 1–11 (2009). https://doi.org/10.4204/EPTCS.9.1, http://arxiv.org/abs/0911.2317
Ablayev, F., Vasiliev, A.: Classical and quantum parallelism in the quantum fingerprinting method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-0_1
Ablayev, F., Vasiliev, A.: On computational power of quantum read-once branching programs. Electron. Proc. Theoret. Comput. Sci. 52, 1–12 (2011). https://doi.org/10.4204/EPTCS.52.1
Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 025202 (2014). http://stacks.iop.org/1612-202X/11/i=2/a=025202
Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–284 (1994). https://doi.org/10.1002/rsa.3240050203
Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceeding of the 39th IEEE Conference on Foundation of Computer Science, FOCS 1998, pp. 332–342. IEEE Computer Society, Washington, DC (1998). https://doi.org/10.1109/SFCS.1998.743469, http://arxiv.org/abs/quant-ph/9802062
Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. In: Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communication, and Cryptography. LNCS, vol. 5106, pp. 47–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2_5, http://arxiv.org/abs/0805.1686
Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric codes. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 191–197, October 2009. https://doi.org/10.1109/FOCS.2009.44
Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621. ACM, New York (2003). https://doi.org/10.1145/780542.780631
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001). https://doi.org/10.1103/PhysRevLett.87.167902, www.arXiv.org/quant-ph/0102001v1
Chen, S., Moore, C., Russell, A.: Small-bias sets for nonabelian groups. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. LNCS, vol. 8096, pp. 436–451. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40328-6_31
Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, vol. 839, p. 842 (1977)
Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) Mathematical Foundations of Computer Science. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09526-8_5
Gavinsky, D., Ito, T.: Quantum fingerprints that keep secrets. Technical report. Cornell University Library arXiv:quant-ph/1010.5342 (2010)
Gottesman, D., Chuang, I.: Quantum digital signatures. Technical report. Cornell University Library arXiv:quant-ph/0105032 (2001)
Holevo, A.S.: Some estimates of the information transmitted by quantum communication channel (Russian). Probl. Pered. Inform. [Probl. Inf. Transm.] 9(3), 3–11 (1973)
Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013). https://doi.org/10.1007/s11128-012-0421-8
Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013). https://doi.org/10.1007/s11128-012-0516-2
Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)
Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 213–223. ACM, New York (1990). https://doi.org/10.1145/100216.100244
Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–376 (1999). https://doi.org/10.1109/SFFCS.1999.814608
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1 edn. Cambridge University Press, Cambridge (2000). https://doi.org/10.2277/0521635039
Vasiliev, A.: Quantum hashing for finite abelian groups. Lobachevskii J. Math. 37(6), 753–757 (2016). https://doi.org/10.1134/S1995080216060184
de Wolf, R.: Quantum computing and communication complexity. Ph.D. thesis, University of Amsterdam (2001)
Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016). https://doi.org/10.1038/srep19788
Acknowledgments
The research was supported by the government assignment for FRC Kazan Scientific Center of the Russian Academy of Sciences.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Ablayev, F., Ablayev, M., Vasiliev, A. (2020). Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-50026-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50025-2
Online ISBN: 978-3-030-50026-9
eBook Packages: Computer ScienceComputer Science (R0)