Skip to main content

Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12159)


Fingerprinting and cryptographic hashing have quite different usages in computer science, but have similar properties. Interpretation of their properties is determined by the area of their usage: fingerprinting methods are methods for constructing efficient randomized and quantum algorithms for computational problems, while hashing methods are one of the central cryptographic primitives.

Fingerprinting and hashing methods are being developed from the mid of the previous century, while quantum fingerprinting and quantum hashing have a short history.

In the paper we present computational aspects of quantum fingerprinting, discuss cryptographic properties of quantum hashing. We investigate the pre-image resistance of this function and show that it reveals only O(1) bits of information about the input.


  • Quantum computations
  • Quantum cryptography
  • Fingerprinting
  • Hashing

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-50026-9_1
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   69.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-50026-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   89.99
Price excludes VAT (USA)


  1. Ablayev, F., Ablayev, M.: On the concept of cryptographic quantum hashing. Laser Phys. Lett. 12(12), 125204 (2015).

  2. Ablayev, F., Ablayev, M.: Quantum hashing via \(\epsilon \)-universal hashing constructions and classical fingerprinting. Lobachevskii J. Math. 36(2), 89–96 (2015).

  3. Ablayev, F., Gainutdinova, A., Karpinski, M.: On computational power of quantum branching programs. In: Freivalds, R. (ed.) FCT, vol. 2138, pp. 59–70. Springer, Heidelberg (2001).,

  4. Ablayev, F., Vasiliev, A.: Algorithms for quantum branching programs based on fingerprinting. Electron. Proc. Theoret. Comput. Sci. 9, 1–11 (2009).,

  5. Ablayev, F., Vasiliev, A.: Classical and quantum parallelism in the quantum fingerprinting method. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp. 1–12. Springer, Heidelberg (2011).

    CrossRef  Google Scholar 

  6. Ablayev, F., Vasiliev, A.: On computational power of quantum read-once branching programs. Electron. Proc. Theoret. Comput. Sci. 52, 1–12 (2011).

  7. Ablayev, F., Vasiliev, A.: Cryptographic quantum hashing. Laser Phys. Lett. 11(2), 025202 (2014).

  8. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Struct. Algorithms 5(2), 271–284 (1994).

  9. Ambainis, A., Freivalds, R.: 1-way quantum finite automata: strengths, weaknesses and generalizations. In: Proceeding of the 39th IEEE Conference on Foundation of Computer Science, FOCS 1998, pp. 332–342. IEEE Computer Society, Washington, DC (1998).,

  10. Ambainis, A., Nahimovs, N.: Improved constructions of quantum automata. In: Kawano, Y., Mosca, M. (eds.) Theory of Quantum Computation, Communication, and Cryptography. LNCS, vol. 5106, pp. 47–56. Springer, Heidelberg (2008).,

  11. Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric codes. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009, pp. 191–197, October 2009.

  12. Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 2003, pp. 612–621. ACM, New York (2003).

  13. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001).,

  14. Chen, S., Moore, C., Russell, A.: Small-bias sets for nonabelian groups. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. LNCS, vol. 8096, pp. 436–451. Springer, Heidelberg (2013).

  15. Freivalds, R.: Probabilistic machines can use less running time. In: IFIP Congress, vol. 839, p. 842 (1977)

    Google Scholar 

  16. Freivalds, R.: Fast probabilistic algorithms. In: Becvar, J. (ed.) Mathematical Foundations of Computer Science. LNCS, vol. 74, pp. 57–69. Springer, Heidelberg (1979).

  17. Gavinsky, D., Ito, T.: Quantum fingerprints that keep secrets. Technical report. Cornell University Library arXiv:quant-ph/1010.5342 (2010)

  18. Gottesman, D., Chuang, I.: Quantum digital signatures. Technical report. Cornell University Library arXiv:quant-ph/0105032 (2001)

  19. Holevo, A.S.: Some estimates of the information transmitted by quantum communication channel (Russian). Probl. Pered. Inform. [Probl. Inf. Transm.] 9(3), 3–11 (1973)

    Google Scholar 

  20. Li, D., Zhang, J., Guo, F.Z., Huang, W., Wen, Q.Y., Chen, H.: Discrete-time interacting quantum walks and quantum hash schemes. Quantum Inf. Process. 12(3), 1501–1513 (2013).

  21. Li, D., Zhang, J., Ma, X.W., Zhang, W.W., Wen, Q.Y.: Analysis of the two-particle controlled interacting quantum walks. Quantum Inf. Process. 12(6), 2167–2176 (2013).

  22. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Google Scholar 

  23. Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 213–223. ACM, New York (1990).

  24. Nayak, A.: Optimal lower bounds for quantum automata and random access codes. In: 40th Annual Symposium on Foundations of Computer Science, pp. 369–376 (1999).

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1 edn. Cambridge University Press, Cambridge (2000).

  26. Vasiliev, A.: Quantum hashing for finite abelian groups. Lobachevskii J. Math. 37(6), 753–757 (2016).

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. de Wolf, R.: Quantum computing and communication complexity. Ph.D. thesis, University of Amsterdam (2001)

    Google Scholar 

  28. Yang, Y.G., Xu, P., Yang, R., Zhou, Y.H., Shi, W.M.: Quantum hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption. Sci. Rep. 6, 19788 (2016).

Download references


The research was supported by the government assignment for FRC Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Farid Ablayev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ablayev, F., Ablayev, M., Vasiliev, A. (2020). Quantum Hashing and Fingerprinting for Quantum Cryptography and Computations. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)