Skip to main content

Computational Hardness of Multidimensional Subtraction Games

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

  • 646 Accesses

Abstract

We study the algorithmic complexity of solving subtraction games in a fixed dimension with a finite difference set. We prove that there exists a game in this class such that solving the game is \({\mathbf {EXP}}\)-complete and requires time \(2^{\varOmega (n)}\), where n is the input size. This bound is optimal up to a polynomial speed-up.

The results are based on the construction introduced by Larsson and Wästlund. It relates subtraction games and cellular automata.

The article was prepared within the framework of the HSE University Basic Research Program. The second author was supported in part by RFBR grant 20-01-00645 and the state assignment topic no. 0063-2016-0003.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, M., Nowakowski, R., Wolfe, D.: Lessons in Play: An Introduction to Combinatorial Game Theory. Taylor & Francis, Abington (2007)

    Book  Google Scholar 

  2. Berlekamp, E.R., Conway, J.H., Guy, R.K.: Winning Ways for Your Mathematical Plays, vol. 1–4. A.K. Peters, Natick (2001–2004)

    Google Scholar 

  3. Boros, E., Gurvich, V., Oudalov, V.: A polynomial algorithm for a two parameter extension of Wythoff NIM based on the Perron-Frobenius theory. Int J. Game Theory 42(4), 891–915 (2013). https://doi.org/10.1007/s00182-012-0338-6

    Article  MathSciNet  MATH  Google Scholar 

  4. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Tetris hypergraphs and combinations of impartial games. CoRR abs/1701.02819 (2017). http://arxiv.org/abs/1701.02819

  5. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: On the Sprague-Grundy function of exact \(k\)-nim. Discrete Appl. Math. 239, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  6. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function of matroids and related hypergraphs. Theor. Comput. Sci. 799, 40–58 (2019)

    Article  MathSciNet  Google Scholar 

  7. Boros, E., Gurvich, V., Ho, N.B., Makino, K., Mursic, P.: Sprague-Grundy function of symmetric hypergraphs. J. Comb. Theory Ser. A 165, 176–186 (2019)

    Article  MathSciNet  Google Scholar 

  8. Bouton, C.L.: Nim, a game with a complete mathematical theory. Ann. Math. 2nd Ser. 3, 35–39 (1901–1902)

    Google Scholar 

  9. Conway, J.H.: On Numbers and Games. Academic Press, London, New York, San Francisco (1976)

    Google Scholar 

  10. Demaine, E.D., Hearn, R.A.: Playing games with algorithms: algorithmic combinatorial game theory. CoRR abs/cs/0106019v2 (2008). http://arxiv.org/abs/cs/0106019v2

  11. Duchêne, E., Rigo, M.: Invariant games. Theor. Comput. Sci. 411, 3169–3180 (2010)

    Article  MathSciNet  Google Scholar 

  12. Fraenkel, A.: How to beat your Wythoff games’ opponent on three fronts. Am. Math. Mon. 89, 353–361 (1982)

    Article  MathSciNet  Google Scholar 

  13. Fraenkel, A.: Wythoff games, continued fractions, cedar trees and Fibonacci searches. Theor. Comput. Sci. 29, 49–73 (1984)

    Article  MathSciNet  Google Scholar 

  14. Golomb, S.W.: A mathematical investigation of games of “take-away”. J. Comb. Theory 1(4), 443–458 (1966)

    Article  MathSciNet  Google Scholar 

  15. Grundy, P.M., Smith, C.: Disjunctive games with the last player losing. Proc. Camb. Philos. Soc. 52, 527–533 (1956)

    Article  MathSciNet  Google Scholar 

  16. Gurvich, V., Heubach, S., Ho, N.B., Chikin, N.: Slow \(k\)-nim integers. Electron. J. Comb. Number Theory 20, 1–19 (2020)

    Google Scholar 

  17. Gurvich, V., Ho, N.B.: Slow \(k\)-nim. RUTCOR Research Report RRR-03-2015 (2015)

    Google Scholar 

  18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2006)

    MATH  Google Scholar 

  19. Jenkyns, T.A., Mayberry, J.P.: The skeletion of an impartial game and the Nim-function of Moore’s Nim\({}_k\). Int J. Game Theory 9, 51–63 (1980). https://doi.org/10.1007/BF01784796

    Article  MATH  Google Scholar 

  20. Larsson, U., Wästlund, W.: From heaps of matches to the limits of computability. Electron. J. Comb. 20(3), #P41 (2013)

    Google Scholar 

  21. Moore, E.: A generalization of the game called Nim. Ann. Math. Second Ser. 11(3), 93–94 (1910)

    Article  MathSciNet  Google Scholar 

  22. von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behaviour. Princeton University Press, Princeton (1944)

    MATH  Google Scholar 

  23. Shaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16, 185–225 (1978)

    Article  MathSciNet  Google Scholar 

  24. Sipser, M.: Introduction to the Theory of Computation. Cengage Learning, Boston (2013)

    MATH  Google Scholar 

  25. Wythoff, W.: A modification of the game of Nim. Nieuw Archief voor Wiskunde 7, 199–202 (1907)

    MATH  Google Scholar 

Download references

Acknowledgment

The authors are grateful to the anonymous referee for several helpful remarks improving both, the results and their presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Vyalyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurvich, V., Vyalyi, M. (2020). Computational Hardness of Multidimensional Subtraction Games. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics