Skip to main content

Borophenes: Insights and Predictions From Computational Analyses

  • Chapter
  • First Online:
2D Boron: Boraphene, Borophene, Boronene

Abstract

The structural chemistry of Boron has always been very challenging. The recent discovery of two-dimensional boron phases (borophenes) on the metal templates has been one of the remarkable developments in the chemistry of boron. However, borophene is bound to have different structural variations, depending upon the synthetic techniques. Though always consisting of triangular networks, the nonplanar distortions and distribution of hexagonal holes to varying hole densities lead to dramatic modifications in structural preferences and stability. In this chapter, the recent theoretical advancements, which led fundamental contributions in understanding the structural chemistry of two- dimensional boron phases are discussed. Drawing relationships to the planar boron clusters and extended boron compounds, many structural possibilities are predicted, which eventually influenced several experimental efforts to synthesize these phases. Electron counting strategies are introduced based upon benzenoid aromaticity and MgB2, to understand their electronic structure and stability. With the help of molecular dynamics simulations on different metal surfaces and the electron density mapping, probable atomic arrangements and growth mechanisms of the recently synthesized borophenes phases are arrived at. These structural variations in borophene phases are reminiscent of the structural chemistry of 3D boron allotropes, where the presence of fractional occupancies and crystallization procedures bring in significant structural polymorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B. Albert, H. Hillebrecht, Boron: Elementary challenge for experimenters and theoreticians. Angew. Chem., Int. Ed 48, 8640–8668 (2009)

    Article  CAS  Google Scholar 

  2. E.D. Jemmis, M.M. Balakrishnarajan, Polyhedral boranes and elemental boron: Direct structural relations and diverse electronic requirements. J. Am. Chem. Soc. 123, 4324–4330 (2001)

    Article  CAS  Google Scholar 

  3. T. Ogitsu, E. Schwegler, G. Galli, β-Rhombohedral boron: At the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013)

    Article  CAS  Google Scholar 

  4. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015)

    Article  CAS  Google Scholar 

  5. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016)

    Article  CAS  Google Scholar 

  6. W.-L. Li, X. Chen, T. Jian, T.-T. Chen, J. Li, L.-S. Wang, From planar boron clusters to borophenes and metalloborophenes. Nat. Rev. Chem. 1, 0071 (2017)

    Article  CAS  Google Scholar 

  7. A.P. Sergeeva, I.A. Popov, Z.A. Piazza, W.-L. Li, C. Romanescu, L.-S. Wang, A.I. Boldyrev, Understanding boron through size-selected clusters: Structure, chemical bonding, and fluxionality. Acc. Chem. Res. 47, 1349–1358 (2014)

    Article  CAS  Google Scholar 

  8. E.D. Jemmis, D.L. Prasad, Unknowns in the chemistry of boron. Curr. Sci. 95, 1277–1283 (2008)

    CAS  Google Scholar 

  9. N. Karmodak, E.D. Jemmis, Fragment approach to the electronic structure of Ï„-boron allotrope. Phys. Rev. B 95, 165128 (2017)

    Article  Google Scholar 

  10. B. Kiraly, X. Liu, L. Wang, Z. Zhang, A.J. Mannix, B.L. Fisher, B.I. Yakobson, M.C. Hersam, N.P. Guisinger, Borophene synthesis on au(111). ACS Nano 13, 3816–3822 (2019)

    Article  CAS  Google Scholar 

  11. Z. Qing, Z. Jin, C. Peng, F. Baojie, L. Wenbin, S. Shaoxiang, L. Hui, M. Sheng, C. Lan, W. Kehui, Metastable phases of 2D boron sheets on Ag(1 1 1). J. Phys.: Condens. Matter 29, 095002 (2017)

    Google Scholar 

  12. G. Tai, T. Hu, Y. Zhou, X. Wang, J. Kong, T. Zeng, Y. You, Q. Wang, Synthesis of atomically thin boron films on copper foils. Angew. Chem., Int. Ed. 54, 15473–15477 (2015)

    Article  CAS  Google Scholar 

  13. R. Wu, I.K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, A. Gozar, Large-area single-crystal sheets of borophene on cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019)

    Article  CAS  Google Scholar 

  14. I. Boustani, Systematic ab initio investigation of bare boron clusters: Determination of the geometry and electronic structures of Bn (n= 2–14). Phys. Rev. B 55, 16426 (1997)

    Article  CAS  Google Scholar 

  15. Y. Liu, E.S. Penev, B.I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations. Angew. Chem. 125, 3238–3241 (2013)

    Article  Google Scholar 

  16. H. Tang, S. Ismail-Beigi, Novel precursors for boron nanotubes: The competition of two-center and three-center bonding in boron sheets. Phys. Rev. Lett. 99, 115501 (2007)

    Article  CAS  Google Scholar 

  17. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, X.C. Zeng, Two-dimensional boron monolayer sheets. ACS Nano 6, 7443–7453 (2012)

    Article  CAS  Google Scholar 

  18. X. Yu, L. Li, X.-W. Xu, C.-C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm. J. Phys. Chem. C 116, 20075–20079 (2012)

    Article  CAS  Google Scholar 

  19. Z. Zhang, Y. Yang, G. Gao, B.I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates. Angew. Chem., Int. Ed. 54, 13022–13026 (2015)

    Article  CAS  Google Scholar 

  20. Z. Zhang, S.N. Shirodkar, Y. Yang, B.I. Yakobson, Gate-voltage control of borophene structure formation. Angew. Chem., Int. Ed. 56, 15421–15426 (2017)

    Article  CAS  Google Scholar 

  21. S.N. Shirodkar, E.S. Penev, B.I. Yakobson, Honeycomb boron: Alchemy on aluminum pan? Sci. Bull. 63, 270–271 (2018)

    Article  CAS  Google Scholar 

  22. E.S. Penev, S. Bhowmick, A. Sadrzadeh, B.I. Yakobson, Polymorphism of two-dimensional boron. Nano Lett. 12, 2441–2445 (2012)

    Article  CAS  Google Scholar 

  23. E.D. Jemmis, E.G. Jayasree, Analogies between boron and carbon. Acc. Chem. Res. 36, 816–824 (2003)

    Article  CAS  Google Scholar 

  24. I. Boustani, New quasi-planar surfaces of bare boron. Surf. Sci. 370, 355–363 (1997)

    Article  CAS  Google Scholar 

  25. I. Boustani, New convex and spherical structures of bare boron clusters. J. Solid State Chem. 133, 182–189 (1997)

    Article  CAS  Google Scholar 

  26. H. Hogeveen, P.W. Kwant, J. Postma, P.T. van Duynen, Electronic spectra of pyramidal dications, (CCH3)6 2+ and (CH)6 2+. Tetrahedron Lett. 15, 4351–4354 (1974)

    Article  Google Scholar 

  27. E.D. Jemmis, P.V.R. Schleyer, Aromaticity in three dimensions. 4. Influence of orbital compatibility on the geometry and stability of capped annulene rings with six interstitial electrons. J. Am. Chem. Soc 104, 4781–4788 (1982)

    Article  CAS  Google Scholar 

  28. M. Böyükata, C. Özdoğan, Z.B. Güvenç, Effects of hydrogen hosting on cage structures of boron clusters: Density functional study of BmHn (m = 5–10 and n ≤ m) complexes. Phys. Scr. 77, 025602 (2008)

    Article  CAS  Google Scholar 

  29. N. Gonzalez Szwacki, C.J. Tymczak, B12Hn and B12Fn: Planar vs icosahedral structures. Nanoscale Res. Lett. 7, 1–6 (2012)

    Article  CAS  Google Scholar 

  30. N. Karmodak, R. Chaliha, E.D. Jemmis, Overlap of radial dangling orbitals controls the relative stabilities of polyhedral BnHn–x isomers (n = 5–12, x = 0 to n – 1). Inorg. Chem. 58, 3627–3634 (2019)

    Article  CAS  Google Scholar 

  31. J.K. Olson, A.I. Boldyrev, Planar to 3D transition in the B6Hy anions. J. Phys. Chem. A 117, 1614–1620 (2013)

    Article  CAS  Google Scholar 

  32. A.P. Sergeeva, Z.A. Piazza, C. Romanescu, W.-L. Li, A.I. Boldyrev, L.-S. Wang, B22 − and B23 −: All-boron analogues of anthracene and Phenanthrene. J. Am. Chem. Soc. 134, 18065–18073 (2012)

    Article  CAS  Google Scholar 

  33. N. Gonzalez Szwacki, A. Sadrzadeh, B.I. Yakobson, B80 fullerene: An Ab-initio prediction of geometry, stability, and electronic structure. Phys. Rev. Lett. 98, 166804 (2007)

    Article  CAS  Google Scholar 

  34. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic press, 1996)

    Google Scholar 

  35. E.S. Penev, V.I. Artyukhov, F. Ding, B.I. Yakobson, Unfolding the fullerene: Nanotubes, graphene and poly-elemental varieties by simulations. Adv. Mater. 24, 4956–4976 (2012)

    Article  CAS  Google Scholar 

  36. D.L.V.K. Prasad, E.D. Jemmis, Stuffing improves the stability of Fullerenelike boron clusters. Phys. Rev. Lett. 100, 165504 (2008)

    Article  CAS  Google Scholar 

  37. D.L.V.K. Prasad, E.D. Jemmis, Stuffed fullerenelike boron carbide nanoclusters. Appl. Phys. Lett. 96, 023108 (2010)

    Article  CAS  Google Scholar 

  38. W. Huang, L.-S. Wang, Probing the 2D to 3D structural transition in gold cluster anions using argon tagging. Phys. Rev. Lett. 102, 153401 (2009)

    Article  CAS  Google Scholar 

  39. Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Formation of hydrogenated boron clusters in an external quadrupole static attraction ion trap. J. Chem. Phys. 128, 124304 (2008)

    Article  CAS  Google Scholar 

  40. Y. Ohishi, K. Kimura, M. Yamaguchi, N. Uchida, T. Kanayama, Synthesis and formation mechanism of hydrogenated boron clusters B12Hn with controlled hydrogen content. J. Chem. Phys. 133, 074305 (2010)

    Article  CAS  Google Scholar 

  41. D.Y. Zubarev, A.I. Boldyrev, Comprehensive analysis of chemical bonding in boron clusters. J. Comput. Chem. 28, 251–268 (2007)

    Article  CAS  Google Scholar 

  42. D.Y. Zubarev, A.I. Boldyrev, Developing paradigms of chemical bonding: Adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008)

    Article  CAS  Google Scholar 

  43. B. Kiran, S. Bulusu, H.-J. Zhai, S. Yoo, X.C. Zeng, L.-S. Wang, Planar-to-tubular structural transition in boron clusters: B20 as the embryo of single-walled boron nanotubes. Proc. Natl. Acad. Sci. U. S. A. 102, 961–964 (2005)

    Article  CAS  Google Scholar 

  44. N. Karmodak, E.D. Jemmis, Exohedral complexation of B40, C60 and Arenes with transition metals: A comparative DFT study. Chem. Asian J. 11, 3350–3354 (2016)

    Article  CAS  Google Scholar 

  45. H.-J. Zhai, Y.-F. Zhao, W.-L. Li, Q. Chen, H. Bai, H.-S. Hu, Z.A. Piazza, W.-J. Tian, H.-G. Lu, Y.-B. Wu, Y.-W. Mu, G.-F. Wei, Z.-P. Liu, J. Li, S.-D. Li, L.-S. Wang, Observation of an all-boron fullerene. Nat. Chem. 6, 727–731 (2014)

    Article  CAS  Google Scholar 

  46. Z.A. Piazza, H.S. Hu, W.L. Li, Y.F. Zhao, J. Li, L.S. Wang, Planar hexagonal B36 as a potential basis for extended single-atom layer boron sheets. Nat. Commun. 5, 3113 (2014)

    Article  CAS  Google Scholar 

  47. S. Suehara, T. Aizawa, T. Sasaki, Graphenelike surface boron layer: Structural phases on transition-metal diborides (0001). Phys. Rev. B 81, 085423 (2010)

    Article  CAS  Google Scholar 

  48. M.E. Jones, R.E. Marsh, The preparation and structure of magnesium boride, MgB2. J. Am. Chem. Soc. 76, 1434–1436 (1954)

    Article  CAS  Google Scholar 

  49. D.L.V.K. Prasad, E.D. Jemmis, Boron and MgB2 analogs of fullerenes and carbon nanotubes: A density functional theory study. J. Mol. Struc.: THEOCHEM 771, 111–115 (2006)

    Article  CAS  Google Scholar 

  50. H. Tang, S. Ismail-Beigi, Self-doping in boron sheets from first principles: A route to structural design of metal boride nanostructures. Phys. Rev. B 80, 134113 (2009)

    Article  CAS  Google Scholar 

  51. N. Karmodak, E.D. Jemmis, The role of holes in borophenes: An Ab initio study of their structure and stability with and without metal templates. Angew. Chem., Int. Ed 56, 10093–10097 (2017)

    Article  CAS  Google Scholar 

  52. J. Kunstmann, A. Quandt, Broad boron sheets and boron nanotubes: An ab initio study of structural, electronic, and mechanical properties. Phys. Rev. B 74, 035413 (2006)

    Article  CAS  Google Scholar 

  53. H. Tang, S. Ismail-Beigi, First-principles study of boron sheets and nanotubes. Phys. Rev. B 82, 115412 (2010)

    Article  CAS  Google Scholar 

  54. H. Shu, F. Li, P. Liang, X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an ag(111) surface. Nanoscale 8, 16284–16291 (2016)

    Article  CAS  Google Scholar 

  55. E.S. Penev, A. Kutana, B.I. Yakobson, Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016)

    Article  CAS  Google Scholar 

  56. N. Gao, X. Wu, X. Jiang, Y. Bai, J. Zhao, Structure and stability of bilayer borophene: The roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018)

    Google Scholar 

  57. L.Z. Zhang, Q.B. Yan, S.X. Du, G. Su, H.J. Gao, Boron sheet adsorbed on metal surfaces: Structures and electronic properties. J. Phys. Chem. C 116, 18202–18206 (2012)

    Article  CAS  Google Scholar 

  58. N. Karmodak, E.D. Jemmis, Metal templates and boron sources controlling Borophene structures: An ab initio study. J. Phys. Chem. C 122, 2268–2274 (2018)

    Article  CAS  Google Scholar 

  59. Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Substrate-induced nanoscale undulations of Borophene on silver. Nano Lett. 16, 6622–6627 (2016)

    Article  CAS  Google Scholar 

  60. X. Liu, Z. Zhang, L. Wang, B.I. Yakobson, M.C. Hersam, Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 17, 783–788 (2018)

    Article  CAS  Google Scholar 

  61. W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, K. Wu, Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018)

    Article  CAS  Google Scholar 

  62. X. Liu, L. Wang, S. Li, M.S. Rahn, B.I. Yakobson, M.C. Hersam, Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019)

    Article  CAS  Google Scholar 

  63. X. Sun, X. Liu, J. Yin, J. Yu, Y. Li, Y. Hang, X. Zhou, M. Yu, J. Li, G. Tai, W. Guo, Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017)

    Article  CAS  Google Scholar 

  64. F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016)

    Article  CAS  Google Scholar 

  65. X.-F. Zhou, X. Dong, A.R. Oganov, Q. Zhu, Y. Tian, H.-T. Wang, Semimetallic two-dimensional boron allotrope with massless Dirac fermions. Phys. Rev. Lett. 112, 085502 (2014)

    Article  CAS  Google Scholar 

  66. H. Liu, J. Gao, J. Zhao, From boron cluster to two-dimensional boron sheet on cu(111) surface: Growth mechanism and hole formation. Sci. Rep. 3, 3238 (2013)

    Article  Google Scholar 

  67. V.I. Artyukhov, Y. Liu, B.I. Yakobson, Equilibrium at the edge and atomistic mechanisms of graphene growth. Proc. Natl. Acad. Sci. 109, 15136–15140 (2012)

    Article  CAS  Google Scholar 

  68. Z. Zhang, A.J. Mannix, X. Liu, Z. Hu, N.P. Guisinger, M.C. Hersam, B.I. Yakobson, Near-equilibrium growth from borophene edges on silver. Sci. Adv 5, eaax0246 (2019)

    Article  CAS  Google Scholar 

  69. Z. Zhang, E.S. Penev, B.I. Yakobson, Two-dimensional materials: Polyphony in B flat. Nat. Chem. 8, 525–527 (2016)

    Article  CAS  Google Scholar 

  70. B. Feng, O. Sugino, R.-Y. Liu, J. Zhang, R. Yukawa, M. Kawamura, T. Iimori, H. Kim, Y. Hasegawa, H. Li, L. Chen, K. Wu, H. Kumigashira, F. Komori, T.-C. Chiang, S. Meng, I. Matsuda, Dirac fermions in Borophene. Phys. Rev. Lett. 118, 096401 (2017)

    Article  Google Scholar 

  71. H. Zhang, Y. Xie, Z. Zhang, C. Zhong, Y. Li, Z. Chen, Y. Chen, Dirac nodal lines and tilted semi-Dirac cones coexisting in a striped boron sheet. J. Phys. Chem. Lett. 8, 1707–1713 (2017)

    Article  CAS  Google Scholar 

  72. Z. Zhang, Y. Yang, E.S. Penev, B.I. Yakobson, Elasticity, flexibility, and ideal strength of Borophenes. Adv. Funct. Mater. 27, 1605059 (2017)

    Article  CAS  Google Scholar 

  73. C. Liu, Z. Dai, J. Zhang, Y. Jin, D. Li, C. Sun, Two-dimensional boron sheets as metal-free catalysts for hydrogen evolution reaction. J. Phys. Chem. C 122, 19051–19055 (2018)

    Article  CAS  Google Scholar 

  74. X. Zhang, J. Hu, Y. Cheng, H.Y. Yang, Y. Yao, S.A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016)

    Article  CAS  Google Scholar 

  75. Y. Huang, S.N. Shirodkar, B.I. Yakobson, Two-dimensional boron polymorphs for visible range Plasmonics: A first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017)

    Article  CAS  Google Scholar 

  76. S. Gupta, S.N. Shirodkar, A. Kutana, B.I. Yakobson, In pursuit of 2D materials for maximum optical response. ACS Nano 12, 10880–10889 (2018)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eluvathingal D. Jemmis or Boris I. Yakobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karmodak, N., Jemmis, E.D., Yakobson, B.I. (2021). Borophenes: Insights and Predictions From Computational Analyses. In: Matsuda, I., Wu, K. (eds) 2D Boron: Boraphene, Borophene, Boronene. Springer, Cham. https://doi.org/10.1007/978-3-030-49999-0_2

Download citation

Publish with us

Policies and ethics