Skip to main content

Plasma and Plasma–Cell Interaction Simulations

  • Chapter
  • First Online:
Plasma Cancer Therapy

Abstract

In this chapter, we first give an overview of modeling approaches in the literature that are relevant for studying plasma for cancer treatment, including both macro-scale and atomic/molecular scale models. Subsequently, we will present typical results obtained by these models to illustrate the type of information that can be obtained. Finally, we will conclude and discuss some future challenges for modeling plasma for cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Van der Paal, Generation, transport and molecular interactions of reactive species in plasma medicine, PhD-dissertation, University of Antwerp, 2019

    Google Scholar 

  2. W. Van Gaens, A. Bogaerts, Kinetic modelling for an atmospheric pressure argon plasma jet in humid air. J. Phys. D Appl. Phys. 46, 275201 (2013)

    Google Scholar 

  3. P. Heirman, W. Van Boxem, A. Bogaerts, Reactivity and stability of plasma-generated oxygen and nitrogen species in buffered water solution: a computational study. Phys. Chem. Chem. Phys. 21, 12881–12894 (2019)

    Google Scholar 

  4. G.V. Naidis, Modelling of streamer propagation in atmospheric-pressure helium plasma jets. J. Phys. D Appl. Phys. 43, 402001 (2010)

    ADS  Google Scholar 

  5. G.V. Naidis, Modelling of plasma bullet propagation along a helium jet in ambient air. J. Phys. D Appl. Phys. 44, 215203 (2011)

    ADS  Google Scholar 

  6. J.P. Boeuf, L.L. Yang, L.C. Pitchford, Dynamics of a guided streamer (‘plasma bullet’) in a helium jet in air at atmospheric pressure. J. Phys. D Appl. Phys. 46, 015201 (2013)

    ADS  Google Scholar 

  7. D. Breden, K. Miki, L.L. Raja, Self-consistent two-dimensional modeling of cold atmospheric-pressure plasma jets/bullets. Plasma Sources Sci. Technol. 21, 034011 (2012)

    ADS  Google Scholar 

  8. M. Yousfi, O. Eichwald, N. Merbahi, N. Jomaa, Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations. Plasma Sources Sci. Technol. 21, 045003 (2012)

    ADS  Google Scholar 

  9. X.Y. Liu, X.K. Pei, X.P. Lu, D.W. Liu, Numerical and experimental study on a pulsed-dc plasma jet. Plasma Sources Sci. Technol. 23, 035007 (2014)

    ADS  Google Scholar 

  10. Z. Xiong, E. Robert, V. Sarron, J.M. Pouvesle, M.J. Kushner, Atmospheric-pressure plasma transfer across dielectric channels and tubes. J. Phys. D Appl. Phys. 46, 155203 (2013)

    ADS  Google Scholar 

  11. Z. Xiong, M.J. Kushner, Atmospheric pressure ionization waves propagating through a flexible high aspect ratio capillary channel and impinging upon a target. Plasma Sources Sci. Technol. 21, 034001 (2012)

    ADS  Google Scholar 

  12. Z. Xiong, E. Robert, V. Sarron, J.M. Pouvesle, M.J. Kushner, Dynamics of ionization wave splitting and merging of atmospheric-pressure plasmas in branched dielectric tubes and channels. J. Phys. D Appl. Phys. 45, 275201 (2012)

    Google Scholar 

  13. N.Y. Babaeva, M.J. Kushner, Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air. Plasma Sources Sci. Technol. 23, 015007 (2014)

    ADS  Google Scholar 

  14. G.V. Naidis, On the ring-shaped structure of helium plasma jets. IEEE Trans. Plasma Sci. 43, 733–736 (2015)

    ADS  Google Scholar 

  15. A. Bourdon, T. Darny, F. Pechereau, et al., Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture. Plasma Sources Sci. Technol. 25, 035002 (2016)

    ADS  Google Scholar 

  16. C. Lazarou, C. Anastassiou, C. Topala, et al., Numerical simulation of capillary helium and helium−oxygen atmospheric pressure plasma jets: propagation dynamics and interaction with dielectric. Plasma Sources Sci. Technol. 27, 105007 (2018)

    ADS  Google Scholar 

  17. P. Viergas, F. Péchereau, A. Bourdon, Numerical study on the time evolutions of the electric field in helium plasma jets with positive and negative polarities. Plasma Sources Sci. Technol. 27, 025007 (2018)

    ADS  Google Scholar 

  18. A.M. Lietz, M.J. Kushner, Molecular admixtures and impurities in atmospheric pressure plasma jets. J. Appl. Phys. 124, 153303 (2018)

    ADS  Google Scholar 

  19. L. Chang, L. Nie, Y. Xian, X. Lu, The effect of seed electrons on the repeatability of atmospheric pressure plasma plume propagation. II. Modeling. Phys. Plasmas 23, 123513 (2016)

    ADS  Google Scholar 

  20. Y. Sakiyama, D.B. Graves, H.W. Chang, T. Shimizu, G.E. Morfill, Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J. Phys. D Appl. Phys. 45, 425201 (2012)

    ADS  Google Scholar 

  21. N.Y. Babaeva, M.J. Kushner, Reactive fluxes delivered by dielectric barrier discharge filaments to slightly wounded skin. J. Phys. D Appl. Phys. 46, 025401 (2013)

    ADS  Google Scholar 

  22. H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, Modelling of atmospheric pressure plasmas for biomedical applications. J. Phys. D Appl. Phys. 44, 053001 (2011)

    ADS  Google Scholar 

  23. N.Y. Babaeva, N. Ning, D.B. Graves, M.J. Kushner, Ion activation energy delivered to wounds by atmospheric pressure dielectric-barrier discharges: sputtering of lipid-like surfaces. J. Phys. D Appl. Phys. 45, 115203 (2012)

    ADS  Google Scholar 

  24. N.Y. Babaeva, W. Tian, M.J. Kushner, The interaction between plasma filaments in dielectric barrier discharges and liquid covered wounds: electric fields delivered to model platelets and cells. J. Phys. D Appl. Phys. 47, 235201 (2014)

    ADS  Google Scholar 

  25. G.V. Naidis, Modelling of OH production in cold atmospheric-pressure He–H2O plasma jets. Plasma Sources Sci. Technol. 22, 035015 (2013)

    ADS  Google Scholar 

  26. D.X. Liu, P. Bruggeman, F. Iza, M.Z. Rong, M.G. Kong, Global model of low-temperature atmospheric-pressure He + H2O plasmas. Plasma Sources Sci. Technol. 19, 025018 (2010)

    ADS  Google Scholar 

  27. J. Waskoenig, K. Niemi, N. Knake, L.M. Graham, S. Reuter, V. Schulz-vonder Gathen, T. Gans, Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet. Plasma Sources Sci. Technol. 19, 045018 (2010)

    ADS  Google Scholar 

  28. K. McKay, D.X. Liu, M.Z. Rong, F. Iza, M.G. Kong, Generation and loss of reactive oxygen species in low-temperature atmospheric-pressure RF He + O2 + H2O plasmas. J. Phys. D Appl. Phys. 45, 172001 (2012)

    ADS  Google Scholar 

  29. T. Murakami, K. Niemi, T. Gans, D. O’Connell, W.G. Graham, Afterglow chemistry of atmospheric-pressure helium–oxygen plasmas with humid air impurity. Plasma Sources Sci. Technol. 23, 025005 (2014)

    ADS  Google Scholar 

  30. T. Murakami, K. Niemi, T. Gans, D. O’Connell, W.G. Graham, Interacting kinetics of neutral and ionic species in an atmospheric-pressure helium–oxygen plasma with humid air impurities. Plasma Sources Sci. Technol. 22, 045010 (2013)

    ADS  Google Scholar 

  31. T. Murakami, K. Niemi, T. Gans, D. O’Connell, W.G. Graham, Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities. Plasma Sources Sci. Technol. 22, 015003 (2013)

    ADS  Google Scholar 

  32. W.J.M. Brok, M.D. Bowden, J. van Dijk, J.J.A.M. van der Mullen, G.M.W. Kroesen, Numerical description of discharge characteristics of the plasma needle. J. Appl. Phys. 98, 013302 (2005)

    ADS  Google Scholar 

  33. Y. Sakiyama, D.B. Graves, Finite element analysis of an atmospheric pressure RF-excited plasma needle. J. Phys. D Appl. Phys. 39, 3451 (2006)

    ADS  Google Scholar 

  34. Y. Sakiyama, D.B. Graves, Corona-glow transition in the atmospheric pressure RF-excited plasma needle. J. Phys. D Appl. Phys. 39, 3644 (2006)

    ADS  Google Scholar 

  35. Y. Sakiyama, D.B. Graves, Non-thermal atmospheric RF plasma in one-dimensional spherical coordinates. IEEE Trans. Plasma Sci. 35, 1279 (2007)

    ADS  Google Scholar 

  36. Y. Sakiyama, D.B. Graves, Nonthermal atmospheric rf plasma in one-dimensional spherical coordinates: asymmetric sheath structure and the discharge mechanism. J Appl. Phys. 101, 073306 (2007)

    ADS  Google Scholar 

  37. Y. Sakiyama, D.B. Graves, Neutral gas flow and ring-shaped emission profile in non-thermal RF-excited plasma needle discharge at atmospheric pressure. Plasma Sources Sci. Technol. 18, 025022 (2009)

    ADS  Google Scholar 

  38. W. Van Gaens, A. Bogaerts, Reaction pathways of biomedically active species in an Ar plasma jet. Plasma Sources Sci. Technol. 23, 035015 (2014)

    ADS  Google Scholar 

  39. S. Zhang, W. Van Gaens, B. Van Gessel, S. Hofmann, E. van Veldhuizen, A. Bogaerts, P. Bruggeman, Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms. J Phys. D Appl. Phys. 46, 205202 (2013)

    ADS  Google Scholar 

  40. W. Van Gaens, P.J. Bruggeman, A. Bogaerts, Numerical analysis of the NO and O generation mechanism in a needle-type plasma jet. New J. Phys. 16, 063054 (2014)

    Google Scholar 

  41. W. Van Gaens, S. Iséni, A. Schmidt-Bleker, K.-D. Weltmann, S. Reuter, A. Bogaerts, Numerical analysis of the effect of nitrogen and oxygen admixtures on the chemistry of an argon plasma jet operating at atmospheric pressure. New J. Phys. 17, 033003 (2015)

    Google Scholar 

  42. A. Schmidt-Bleker, J. Winter, S. Iseni, M. Dünnbier, K.D. Weltmann, S. Reuter, Reactive species output of a plasma jet with a shielding gas device - combination of FTIR absorption spectroscopy and gas phase modelling. J. Phys. D Appl. Phys. 47, 145201 (2014)

    ADS  Google Scholar 

  43. A. Schmidt-Bleker, J. Winter, A. Bösel, S. Reuter, K.-D. Weltmann, On the plasma chemistry of a cold atmospheric argon plasma jet with shielding gas device. Plasma Sources Sci. Technol. 25, 015005 (2016)

    ADS  Google Scholar 

  44. Y. Gorbanev, C.C.W. Verlackt, S. Tinck, E. Tuenter, K. Foubert, P. Cos, A. Bogaerts, Combining experimental and modelling approaches to study the sources of reactive species induced in water by the COST RF plasma jet. Phys. Chem. Chem. Phys. 20, 2797–2808 (2018)

    Google Scholar 

  45. Y. Gorbanev, J. Van der Paal, W. Van Boxem, S. Dewilde, A. Bogaerts, Reaction of chloride anion with atomic oxygen in aqueous solutions: can cold plasma help in chemistry research? Phys. Chem. Chem. Phys. 21, 4117–4121 (2019)

    Google Scholar 

  46. S. Schröter, R.A. Gibson, M.J. Kushner, T. Gans, D. O’Connell, Numerical study of the influence of surface reaction probabilities on reactive species in an rf atmospheric pressure plasma containing humidity. Plasma Phys. Control. Fusion 60, 014035 (2018)

    ADS  Google Scholar 

  47. B.R. Locke, S.M. Thagard, Analysis and review of chemical reactions and transport processes in pulsed electrical discharge plasma formed directly in liquid water. Plasma Chem. Plasma Process. 32, 875 (2012)

    Google Scholar 

  48. C.A.J. van Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, Mechanisms of bacterial inactivation in the liquid phase induced by a remote RF cold atmospheric pressure plasma jet. J Phys. D. Appl. Phys. 46, 175203 (2013)

    ADS  Google Scholar 

  49. P. Lukes, E. Dolezalova, I. Sisrova, M. Clupek, Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 23, 015019 (2014)

    ADS  Google Scholar 

  50. S. Hamaguchi, K. Ikuse, T. Kanazawa, Generation of free radicals in liquid by atmospheric-pressure plasmas and its application to biology and medicine. JPS Conf. Proc. 1, 015055 (2014)

    Google Scholar 

  51. C. Chen, D.X. Liu, Z.C. Liu, A.J. Yang, H.L. Chen, G. Shama, M.G. Kong, A model of plasma-biofilm and plasma-tissue interactions at ambient pressure. Plasma Chem. Plasma Process. 34, 403 (2014)

    ADS  Google Scholar 

  52. D.X. Liu, Z.C. Liu, C. Chen, A.J. Yang, D. Li, M.Z. Rong, H.L. Chen, M.G. Kong, Aqueous reactive species induced by a surface air discharge: heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 6, 23737 (2016)

    ADS  Google Scholar 

  53. W. Tian, M.J. Kushner, Influence of excitation pulse duration of dielectric barrier discharges on biomedical applications. J. Phys. D Appl. Phys. 47, 165201 (2014)

    ADS  Google Scholar 

  54. W. Tian, M.J. Kushner, Long-term effects of multiply pulsed dielectric barrier discharges in air on thin water layers over tissue: stationary and random streamers. J. Phys. D Appl. Phys. 48, 494002 (2015)

    Google Scholar 

  55. A.M. Lietz, M.J. Kushner, Air plasma treatment of liquid covered tissue: long timescale chemistry. J. Phys. D Appl. Phys. 49, 425204 (2016)

    ADS  Google Scholar 

  56. A.M. Lietz, M.J. Kushner, Corrigendum: air plasma treatment of liquid covered tissue: long timescale chemistry (2016 J. Phys. D: Appl. Phys. 49 425204). J. Phys. D Appl. Phys. 50, 119501 (2017)

    ADS  Google Scholar 

  57. W. Van Boxem, J. Van der Paal, Y. Gorbanev, S. Vanuytsel, E. Smits, S. Dewilde, A. Bogaerts, Anti-cancer capacity of plasma-treated PBS: effect of chemical composition on cancer cell cytotoxicity. Sci. Rep. 7, 16478 (2017)

    ADS  Google Scholar 

  58. J. Du, Z. Liu, C. Bai, L. Li, Y. Zhao, L. Wang, J. Pan, Concentration distributions and reaction pathways of species in the mass transfer process from atmospheric pressure plasma jet to water. Eur. Phys. J. D 72, 179 (2018)

    ADS  Google Scholar 

  59. A. Lindsay, C. Anderson, E. Slikboer, S. Shannon, D. Graves, Momentum, heat, and neutral mass transport in convective atmospheric pressure plasma-liquid systems and implications for aqueous targets. J. Phys. D Appl. Phys. 48, 424007 (2015)

    ADS  Google Scholar 

  60. S.A. Norberg, G.M. Parsey, A.M. Lietz, E. Johnsen, M.J. Kushner, Atmospheric pressure plasma jets onto a reactive water layer over tissue: pulse repetition rate as a control mechanism. J. Phys. D Appl. Phys. 52, 015201 (2019)

    ADS  Google Scholar 

  61. C.C.W. Verlackt, W. Van Boxem, A. Bogaerts, Transport and accumulation of plasma generated species in aqueous solution. Phys. Chem. Chem. Phys. 20, 6845–6859 (2018)

    Google Scholar 

  62. A. Bogaerts, N. Khosravian, J. Van der Paal, C.C.W. Verlackt, M. Yusupov, B. Kamaraj, E.C. Neyts, Multi-level molecular modeling for plasma medicine. J. Phys. D Appl. Phys. 49, 054002 (2016)

    ADS  Google Scholar 

  63. M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58, 7260–7268 (1998)

    ADS  Google Scholar 

  64. M. Yusupov, K. Wende, S. Kupsch, E.C. Neyts, S. Reuter, A. Bogaerts, Effect of head group and lipid tail oxidation in the cell membrane revealed through integrated simulations and experiments. Sci. Rep. 7, 5761 (2017)

    ADS  Google Scholar 

  65. N. Khosravian, B. Kamaraj, E.C. Neyts, A. Bogaerts, Structural modification of P-glycoprotein induced by OH radicals: insights from atomistic simulations. Sci. Rep. 6, 19466 (2016)

    ADS  Google Scholar 

  66. C.C.W. Verlackt, W. Van Boxem, D. Dewaele, F. Lemière, F. Sobott, J. Benedikt, E.C. Neyts, A. Bogaerts, Mechanisms of peptide oxidation by hydroxyl radicals: insight at the molecular scale. J. Phys. Chem. C 121, 5787–5799 (2017)

    Google Scholar 

  67. C.C.W. Verlackt, E.C. Neyts, A. Bogaerts, Atomic scale behavior of oxygen-based radicals in water. J. Phys. D Appl. Phys. 50, 11LT01 (2017)

    Google Scholar 

  68. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458–9471 (1990)

    ADS  Google Scholar 

  69. A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001)

    Google Scholar 

  70. M. Yusupov, E.C. Neyts, U. Khalilov, R. Snoeckx, A.C.T. van Duin, A. Bogaerts, Atomic scale simulations of plasma species interacting with bacterial cell walls. New J. Phys. 14, 093043 (2012)

    ADS  Google Scholar 

  71. M. Yusupov, A. Bogaerts, S. Huygh, S. Snoeckx, A.C.T. van Duin, E.C. Neyts, Plasma-induced destruction of bacterial cell wall components: a reactive molecular dynamics simulation. J. Phys. Chem. C 117, 5993–5998 (2013)

    Google Scholar 

  72. M. Yusupov, E.C. Neyts, C.C. Verlackt, U. Khalilov, A.C.T. van Duin, A. Bogaerts, Inactivation of the endotoxic biomolecule lipid a by oxygen plasma species: a reactive molecular dynamics study. Plasma Process. Polym. 12, 162–171 (2015)

    Google Scholar 

  73. J. Van der Paal, S. Aernouts, A.C.T. van Duin, E.C. Neyts, A. Bogaerts, Interaction of O and OH radicals with a simple model system for lipids in the skin barrier: a reactive molecular dynamics simulation for plasma medicine. J. Phys. D Appl. Phys. 46, 395201 (2013)

    ADS  Google Scholar 

  74. J. Van der Paal, C.C. Verlackt, M. Yusupov, E.C. Neyts, A. Bogaerts, Structural modification of the skin barrier by OH radicals: a reactive molecular dynamics study for plasma medicine. J. Phys. D Appl. Phys. 48, 155202 (2015)

    ADS  Google Scholar 

  75. R.M. Abolfath, P.K. Biswas, R. Rajnarayanam, T. Brabec, R. Kodym, L. Papiez, Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. J. Phys. Chem. A 116, 3940–3945 (2012)

    Google Scholar 

  76. C.C.W. Verlackt, E.C. Neyts, T. Jacob, D. Fantauzzi, M. Golkaram, Y.-K. Shin, A.C.T. van Duin, A. Bogaerts, Atomic-scale insight in the interactions between hydroxyl radicals and DNA in solution using the ReaxFF reactive force field. New J. Phys. 17, 103005 (2015)

    ADS  Google Scholar 

  77. M. Yusupov, E.C. Neyts, P. Simon, G. Bergiyorov, R. Snoeckx, A.C.T. van Duin, A. Bogaerts, Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. J. Phys. D Appl. Phys. 47, 025205 (2014)

    ADS  Google Scholar 

  78. N. Khosravian, A. Bogaerts, S. Huygh, M. Yusupov, E.C. Neyts, How do plasma-generated OH radicals react with biofilm components? Insights from atomic scale simulations. Biointerphases 10, 029501 (2015)

    Google Scholar 

  79. O. Berger, O. Edholm, F. Jähnig, Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72, 2002–2013 (1997)

    ADS  Google Scholar 

  80. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz Jr., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)

    Google Scholar 

  81. W. Yu, X. He, K. Vanommeslaeghe, A.D. MacKerell Jr., Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 33, 2451 (2012)

    Google Scholar 

  82. W.F. van Gunsteren, H.J.C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual (Biomos, Groningen, 1987), p. 221. http://www.gromos.net/gromos87/GROMOS87_manual.pdf

    Google Scholar 

  83. S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. De Vries, The MARTINI force field: coarse grained model for biomolecular simulations. J. Phys. Chem. B 111, 7812–7824 (2007)

    Google Scholar 

  84. J. Åqvist, A. Warshel, Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93, 2523–2544 (1993)

    Google Scholar 

  85. E.C. Neyts, M. Yusupov, C.C. Verlackt, A. Bogaerts, Computer simulations of plasma-biomolecule and plasma-tissue interactions for a better insight in plasma medicine. J. Phys. D Appl. Phys. 47, 293001 (2014)

    Google Scholar 

  86. J. Razzokov, M. Yusupov, R.M. Cordeiro, A. Bogaerts, Atomic scale understanding of the permeation of plasma species across native and oxidized membranes. J. Phys. D Appl. Phys. 51, 365203 (2018)

    ADS  Google Scholar 

  87. R.M. Cordeiro, Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation. Biochim. Biophys. Acta Biomembr. 1838, 438–444 (2014)

    Google Scholar 

  88. M.N. Möller, Q. Li, J.R. Lancaster, A. Denicola, Acceleration of nitric oxide autoxidation and nitrosation by membranes. IUBMB Life 59, 243–248 (2007)

    Google Scholar 

  89. W.K. Subczynski, M. Lomnicka, J.S. Hyde, Permeability of nitric oxide through lipid bilayer membranes. Free Radic. Res. 24, 343–349 (1996)

    Google Scholar 

  90. A. Reis, M.R.M. Domingues, F.M.L. Amado, A.J.V. Ferrer-Correia, P. Domingues, Separation of peroxidation products of diacyl-phosphatidylcholines by reversed-phase liquid chromatography-mass spectrometry. Biomed. Chromatogr. 19, 129–137 (2005)

    Google Scholar 

  91. J. Van der Paal, E.C. Neyts, C.C.W. Verlackt, A. Bogaerts, Effect of lipid peroxidation on membrane permeability of cancer and normal cells subjected to oxidative stress. Chem. Sci. 7, 489–498 (2016)

    Google Scholar 

  92. J. Wong-Ekkabut, Z. Xu, W. Triampo, I.-M. Tang, D.P. Tieleman, L. Monticelli, Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 93, 4225–4236 (2007)

    ADS  Google Scholar 

  93. L. Beranova, L. Cwiklik, P. Jurkiewicz, M. Hof, P. Jungwirth, Oxidation changes physical properties of phospholipid bilayers: fluorescence spectroscopy and molecular simulations. Langmuir 26, 6140–6144 (2010)

    Google Scholar 

  94. L. Cwiklik, P. Jungwirth, Massive oxidation of phospholipid membranes leads to pore creation and bilayer disintegration. Chem. Phys. Lett. 486, 99–103 (2010)

    ADS  Google Scholar 

  95. P.T. Vernier, M.J. Ziegler, Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers. J. Phys. Chem. B 111, 12993–12996 (2007)

    Google Scholar 

  96. M. Casciola, M. Tarek, A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta. Biomembr. 1858, 2278–2289 (2016)

    Google Scholar 

  97. S.J. Marrink, A.H. de Vries, D.P. Tieleman, Lipids on the move: simulations of membrane pores, domains, stalks and curves. Biochim. Biophys. Acta Biomembr. 1788, 149–168 (2009)

    Google Scholar 

  98. A.M. Hirst, F.M. Frame, M. Arya, N.J. Maitland, D. O’Connell, Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumor Biol. 37, 7021–7031 (2016)

    Google Scholar 

  99. E. Robert, T. Darny, S. Dozias, S. Iseni, J.-M. Pouvesle, New insights on the propagation of pulsed atmospheric plasma streams: from single jet to multi jet arrays. Phys. Plasmas 22, 122007 (2015)

    ADS  Google Scholar 

  100. A. Begum, M. Laroussi, M.R. Pervez, Atmospheric pressure He-air plasma jet: breakdown process and propagation phenomenon. AIP Adv. 3, 062117 (2013)

    ADS  Google Scholar 

  101. M. Yusupov, J. Van der Paal, E.C. Neyts, A. Bogaerts, Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes. Biochim. Biophys. Acta Gen. 1861, 839–847 (2017)

    Google Scholar 

  102. M. Shinitzky, Membrane fluidity in malignancy adversative and recuperative. Biochim. Biophys. Acta Rev. Cancer 738, 251–261 (1984)

    Google Scholar 

  103. J. Van der Paal, C. Verheyen, E.C. Neyts, A. Bogaerts, Hampering effect of cholesterol on the permeation of reactive oxygen species through phospholipids bilayer: possible explanation for plasma cancer selectivity. Sci. Rep. 7, 39526 (2017)

    ADS  Google Scholar 

  104. P.S. Hole, J. Zabkiewicz, C. Munje, Z. Newton, L. Pearn, P. White, N. Marquez, R.K. Hills, A.K. Burnett, A. Tonks, R.L. Darley, Overproduction of NOX-derived ROS in AML promotes proliferation and is associated with defective oxidative stress signaling. Blood 122, 3322–3330 (2013)

    Google Scholar 

  105. M.C. Papadopoulos, S. Saadoun, Key roles of aquaporins in tumor biology. Biochim. Biophys. Acta Biomembr. 1848, 2576–2583 (2015)

    Google Scholar 

  106. R.M. Cordeiro, Molecular dynamics simulations of the transport of reactive oxygen species by mammalian and plant aquaporins. Biochim. Biophys. Acta Gen. 1850, 1786–1794 (2015)

    Google Scholar 

  107. D. Yan, A. Talbot, N. Nourmohammadi, J.H. Sherman, X. Cheng, M. Keidar, Toward understanding the selective anticancer capacity of cold atmospheric plasma - a model based on aquaporins (review). Biointerphases 10, 040801 (2015)

    Google Scholar 

  108. M. Yusupov, D. Yan, R.M. Cordeiro, A. Bogaerts, Atomic scale simulation of H2O2 permeation through aquaporin: toward the understanding of plasma-cancer treatment. J. Phys. D Appl. Phys. 51, 125401 (2018)

    ADS  Google Scholar 

  109. M. Yusupov, J. Razzokov, R.M. Cordeiro, A. Bogaerts, Transport of reactive oxygen and nitrogen species across aquaporin: a molecular level picture. Oxidative Med. Cell Longev. 2019, 2930504 (2019)

    Google Scholar 

  110. C. Shao, M. Saito, Z. Yu, Formation of single- and double-strand breaks of pBR322 plasmid irradiated in the presence of scavengers. Radiat. Environ. Biophys. 38, 105 (1999)

    Google Scholar 

  111. M. Dizdaroglu, P. Jaruga, Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 46, 382 (2012)

    Google Scholar 

  112. J. Cadet, T. Douki, J.-L. Ravanat, P. Di Mascio, Sensitized formation of oxidatively generated damage to cellular DNA by UVA radiation. Photochem. Photobiol. Sci. 8, 903 (2009)

    Google Scholar 

  113. N.R. Jena, P.C. Mishra, Mechanisms of formation of 8-oxoguanine due to reactions of one and two OH• radicals and the H2O2 molecule with guanine: a quantum computational study. J. Phys. Chem. B 109, 14205 (2005)

    Google Scholar 

  114. M. Yusupov, J.-W. Lackmann, J. Razzokov, S. Kumar, K. Stapelmann, A. Bogaerts, Impact of plasma oxidation on structural features of human epidermal growth factor. Plasma Process. Polym. 15, e1800022 (2018)

    Google Scholar 

  115. D. Petrov, B. Zagrovic, Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece. J. Am. Chem. Soc. 133, 7016–7024 (2011)

    Google Scholar 

  116. D. Petrov, X. Daura, B. Zagrovic, Effect of oxidative damage on the stability and dimerization of superoxide dismutase 1. Biophys. J. 110, 1499–1509 (2016)

    ADS  Google Scholar 

  117. A. Renevey, R. Sereina, The importance of N-methylations for the stability of the β6.3-helical conformation of polytheonamide B. Eur. Biophys. J. 46, 363–374 (2017)

    Google Scholar 

  118. C.K. Haluska, M.S. Baptista, A.U. Fernades, A.P. Schroder, C.M. Marques, R. Itri, Photo-activated phase separation in giant vesicles made from different lipid mixture. Biochim. Biophys. Acta Biomembr. 1818, 666–672 (2012)

    Google Scholar 

  119. D.E. Scott et al., Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Nat. Rev. Drug Discov. 15, 533–550 (2016)

    Google Scholar 

  120. T. Kortemme et al., Computational redesign of protein-protein interaction specificity. Nat. Struct. Mol. Biol. 11, 371–379 (2004)

    Google Scholar 

  121. J. Du et al., The design of high affinity human PD-1 mutants by using molecular dynamics simulations (MD). Cell. Commun. Signal. 16, 25 (2018)

    Google Scholar 

  122. B. Knapp et al., Current status and future challenges in T-cell receptor/peptide/MHC molecular dynamics simulations. Brief. Bioinform. 16, 1035 (2015)

    Google Scholar 

  123. K. Weiskopf et al., Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science 341, 88–91 (2013)

    ADS  Google Scholar 

  124. J.Y. Lee et al., Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy. Nat. Commun. 7, 13354 (2016)

    ADS  Google Scholar 

  125. G. Bauer, D.B. Graves, Mechanisms of selective antitumor action of cold atmospheric plasma-derived reactive oxygen and nitrogen species. Plasma Process. Polym. 13, 1157–1178 (2016)

    Google Scholar 

  126. J.-W. Lackmann, S. Schneider, E. Edengeiser, F. Jarzina, S. Brinckmann, E. Steinborn, M. Havenith, J. Benedikt, J.E. Bandow, Photons and particles emitted from cold atmospheric-pressure plasma inactivate bacteria and biomolecules independently and synergistically. J. R. Soc. Interface 10, 20130591 (2013)

    Google Scholar 

  127. T.-Y. Chung, N. Ning, J.W. Chu, D.B. Graves, E. Bartis, J. Seog, G.S. Oehrlein, Plasma deactivation of endotoxic biomolecules: vacuum ultraviolet photon and radical beam effects on Lipid A. Plasma Process. Polym. 10, 167–180 (2013)

    Google Scholar 

  128. E.A.J. Bartis, D.B. Graves, J. Seog, G.S. Oehrlein, Atmospheric pressure plasma treatment of lipopolysaccharide in a controlled environment. J. Phys. D Appl. Phys. 46, 312002 (2013)

    ADS  Google Scholar 

  129. E.A.J. Bartis, C. Barrett, T.Y. Chung, N. Ning, J.W. Chu, D.B. Graves, J. Seog, G.S. Oehrlein, Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma. J. Phys. D Appl. Phys. 47, 045202 (2014)

    ADS  Google Scholar 

  130. J.H. Park, N. Kumar, D.H. Park, M. Yusupov, E.C. Neyts, C.C.W. Verlackt, A. Bogaerts, M.H. Kang, H.S. Uhm, E.H. Choi, P. Attri, A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci. Rep. 5, 13849 (2015)

    ADS  Google Scholar 

  131. M. Marschewski, J. Hirschberg, T. Omairi, O. Hofft, W. Viol, S. Emmert, W. Maus-Friedrichs, Electron spectroscopic analysis of the human lipid skin barrier: cold atmospheric plasma-induced changes in lipid composition. Exp. Dermatol. 21, 921–925 (2012)

    Google Scholar 

  132. E. Takai, T. Kitamura, J. Kuwabara, S. Ikawa, S. Yoshizawa, K. Shiraki, H. Kawasaki, R. Arakawa, K. Kitano, Chemical modification of amino acids by atmospheric-pressure cold plasma in aqueous solution. J. Phys. D Appl. Phys. 47, 285403 (2014)

    Google Scholar 

  133. G.S. Madugundu, J. Cadet, J.R. Wagner, Hydroxyl-radical-induced oxidation of 5-methylcytosine in isolated and cellular DNA. Nucleic Acids Res. 42, 7450–7460 (2014)

    Google Scholar 

  134. S.-H. Hong, E.J. Szili, A.T.A. Jenkins, R.D. Short, Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells. J. Phys. D Appl. Phys. 47, 362001 (2014)

    Google Scholar 

  135. E.J. Szili, J.W. Bradley, R.D. Short, A ‘tissue model’ to study the plasma delivery of reactive oxygen species. J. Phys. D Appl. Phys. 47, 152002 (2014)

    ADS  Google Scholar 

  136. M.U. Hammer, E. Forbrig, S. Kupsch, K.-D. Weltmann, S. Reuter, Influence of plasma treatment on the structure and function of lipids. Plasma Med. 3, 97–114 (2013)

    Google Scholar 

  137. J. Van der Paal, S.-H. Hong, M. Yusupov, N. Gaur, J.-S. Oh, R.D. Short, E.J. Szili, A. Bogaerts, Cell membrane response to oxidative stress for anticancer therapies: an experimental and computational study. Phys. Chem. Chem. Phys. 21(35), 19327–19341 (2019)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Research Foundation—Flanders (FWO; grant numbers: 1200219 N and 11U5416N). The computational work was carried out using the Turing HPC infrastructure at the CalcUA core facility of the Universiteit Antwerpen (UA), a division of the Flemish Supercomputer Center VSC, funded by the Hercules Foundation, the Flemish Government (department EWI), and the UA. We are also very thankful to R. Cordeiro for the very interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annemie Bogaerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bogaerts, A., Van der Paal, J., Heirman, P., Razzokov, J., Yusupov, M. (2020). Plasma and Plasma–Cell Interaction Simulations. In: Keidar, M. (eds) Plasma Cancer Therapy. Springer Series on Atomic, Optical, and Plasma Physics, vol 115. Springer, Cham. https://doi.org/10.1007/978-3-030-49966-2_7

Download citation

Publish with us

Policies and ethics