Skip to main content

Epithelial Malignant Tumors of the Cervix: Squamous Carcinoma

  • Chapter
  • First Online:
Atlas of Diagnostic Pathology of the Cervix

Abstract

Squamous carcinoma, the most common malignancy of the uterine cervix, is almost always associated with high-risk human papillomavirus (HPV) infection. It assumes a variety of morphologies, including keratinizing, non-keratinizing, basaloid, warty, and lymphoepithelioma-like variants. Grade and histotype have no bearing on prognosis, and staging remains the single most important factor in determining patient outcome. Diagnosis may be challenging because of difficulties assessing invasion and the variety of benign and malignant mimickers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, et al. Retrospective International Survey and HPV Time Trends Study Group. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol. 2010;11:1048–56.

    Article  PubMed  CAS  Google Scholar 

  2. Guimerà N, Lloveras B, Lindeman J, Alemany L, van de Sandt M, Alejo M, et al. The occasional role of low-risk human papillomaviruses 6, 11, 42, 44, and 70 in anogenital carcinoma defined by laser capture microdissection/PCR methodology: results from a global study. Am J Surg Pathol. 2013;37:1299–310.

    Article  PubMed  Google Scholar 

  3. Nicolás I, Marimon L, Barnadas E, Saco A, Rodríguez-Carunchio L, Fusté P, et al. HPV-negative tumors of the uterine cervix. Mod Pathol. 2019;32:1189–96.

    Article  PubMed  CAS  Google Scholar 

  4. Clifford GM, Smith JS, Plummer M, Muñoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer. 2003;88:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Halec G, Alemany L, Lloveras B, Schmitt M, Alejo M, Bosch FX, et al. Retrospective International Survey and HPV Time Trends Study Group; Retrospective International Survey and HPV Time Trends Study Group. Pathogenic role of the eight probably/possibly carcinogenic HPV types 26, 53, 66, 67, 68, 70, 73 and 82 in cervical cancer. J Pathol. 2014;234:441–51.

    Article  CAS  PubMed  Google Scholar 

  6. Burk RD, Chen Z, Saller C, Tarvin K, Carvalho AL, Scapulatempo-Neto C, et al. Integrated genomic and molecular characterization of cervical cancer. Nature. 2017;543:378–84.

    Article  CAS  Google Scholar 

  7. van Baars R, van der Marel J, Snijders PJ, Rodriquez-Manfredi A, ter Harmsel B, van den Munckhof HA, et al. CADM1 and MAL methylation status in cervical scrapes is representative of the most severe underlying lesion in women with multiple cervical biopsies. Int J Cancer. 2016;138:463–71.

    Article  PubMed  CAS  Google Scholar 

  8. Del Pino M, Sierra A, Marimon L, Martí Delgado C, Rodriguez-Trujillo A, Barnadas E, et al. CADM1, MAL, and miR124 promoter methylation as biomarkers of transforming cervical intrapithelial lesions. Int J Mol Sci. 2019;20:2262. https://doi.org/10.3390/ijms20092262.

    Article  CAS  PubMed Central  Google Scholar 

  9. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

    Article  PubMed  Google Scholar 

  10. Grayson W, Cooper K. A reappraisal of “Basaloid carcinoma” of the cervix, and the differential diagnosis of basaloid cervical neoplasms. Adv Anat Pathol. 2002;9:290–300.

    Article  PubMed  Google Scholar 

  11. Koenig C, Turnicky RP, Kankam CF, Tavassoli FA. Papillary squamotransitional cell carcinoma of the cervix: a report of 32 cases. Am J Surg Pathol. 1997;21:915–21.

    Article  CAS  PubMed  Google Scholar 

  12. Albores-Saavedra J, Young RH. Transitional cell neoplasms (carcinomas and inverted papillomas) of the uterine cervix: a report of five cases. Am J Surg Pathol. 1995;19:1138–45.

    Article  CAS  PubMed  Google Scholar 

  13. Randall ME, Andersen WA, Mills SE, Kim JAC. Papillary squamous cell carcinoma of the uterine cervix: a clinicopathologic study of nine cases. Int J Gynecol Pathol. 1986;5:1–10.

    Article  CAS  PubMed  Google Scholar 

  14. Cho NH, Joo HJ, Ahn HJ, Jung WH, Lee KG. Detection of human papillomavirus in warty carcinoma of the uterine cervix: Comparison of immunohistochemistry, in situ hybridization and in situ polymerase chain reaction methods. Pathol Res Pract. 1998;194:713–20.

    Article  CAS  PubMed  Google Scholar 

  15. Parra-Herran C, Herfs M, Doria M, Crum CP, Nucci MR. Giant condyloma of the cervix: an uncommon entity associated with low-risk human papilloma virus infection. Am J Surg Pathol. 2013;37:300–4.

    Article  PubMed  Google Scholar 

  16. Robertson DI, Maung R, Duggan MA. Verrucous carcinoma of the genital tract: Is it a distinct entity? Can J Surg. 1993;36:147–51.

    CAS  PubMed  Google Scholar 

  17. Bais AG, Kooi S, Teune TM, Ewing PC, Ansink AC. Lymphoepithelioma-like carcinoma of the uterine cervix: absence of Epstein-Barr virus, but presence of a multiple human papillomavirus infection. Gynecol Oncol. 2005;97:716–8.

    Article  PubMed  Google Scholar 

  18. Chao A, Tsai CN, Hsueh S, Lee LY, Chen TC, Huang SL, et al. Does Epstein-Barr virus play a role in lymphoepithelioma-like carcinoma of the uterine cervix? Int J Gynecol Pathol. 2009;28:279–85.

    Article  PubMed  Google Scholar 

  19. Eggen T, Arnes M, Moe B, Straume B, Ørbo A. Prognosis of early cervical cancer (FIGO stages IA2, IB, and IIA) in northern Norway predicted by malignancy grading score and objective morphometric image analysis. Int J Gynecol Pathol. 2007;26:447–56.

    Article  PubMed  Google Scholar 

  20. Bichel P, Jakobsen A. Histopathologic grading and prognosis of uterine cervical carcinoma. Am J Clin Oncol. 1985;8:247–54.

    Article  CAS  PubMed  Google Scholar 

  21. Graflund M, Sorbe B, Hussein A, Bryne M, Karlsson M. The prognostic value of histopathologic grading parameters and microvessel density in patients with early squamous cell carcinoma of the uterine cervix. Int J Gynecol Cancer. 2002;12:32–41.

    Article  PubMed  Google Scholar 

  22. Kristensen GB, Abeler VM, Risberg B, Tropé C, Bryne M. Tumor size, depth of invasion, and grading of the invasive tumor front are the main prognostic factors in early squamous cell cervical carcinoma. Gynecol Oncol. 1999;74:245–51.

    Article  CAS  PubMed  Google Scholar 

  23. Horn LC, Fischer U, Raptis G, Bilek K, Hentschel B, Richter CE, et al. Pattern of invasion is of prognostic value in surgically treated cervical cancer patients. Gynecol Oncol. 2006;103:906–11.

    Article  PubMed  Google Scholar 

  24. McCluggage WG. Towards developing a meaningful grading system for cervical squamous cell carcinoma. J Pathol Clin Res. 2018;4:81–5.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jesinghaus M, Strehl J, Boxberg M, Brühl F, Wenzel A, Konukiewitz B, et al. Introducing a novel highly prognostic grading scheme based on tumour budding and cell nest size for squamous cell carcinoma of the uterine cervix. J Pathol Clin Res. 2018;4:93–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang B, Cai J, Xu X, Guo S, Wang Z. High-grade tumor budding stratifies early-stage cervical cancer with recurrence risk. PLoS One. 2016;11:e0166311. https://doi.org/10.1371/journal.pone.0166311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jenkins TM, Shojaei H, Song SJ, Schwartz LE. Role of Ancillary techniques in cervical biopsy and endocervical curettage specimens as follow-up to Papanicolaou test results indicating a diagnosis of atypical squamous cells, cannot exclude high-grade squamous intraepithelial lesion, or high-grade squamous intraepithelial lesion. Acta Cytol. 2020;64:155–65. https://doi.org/10.1159/000498888.

    Article  CAS  PubMed  Google Scholar 

  28. van Diepen DA, Hellebrekers B, van Haaften AM, Natté R. Cervical deciduosis imitating dysplasia. BMJ Case Rep 2015;2015. https://doi.org/10.1136/bcr-2015-210030.

  29. Chapman GW, Savage EW, Salem FA. Cervical deciduosis and intraepithelial neoplasia. J Natl Med Assoc. 1979;71:787–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kurman RJ, Carcangiu ML, Herrington CS, Young RH, editors. WHO classification of tumours of female reproductive organs, vol. 6. 4th ed. Lyon: IARC; 2014.

    Google Scholar 

  31. Shih IM, Kurman RJ. Epithelioid trophoblastic tumor: a neoplasm distinct from choriocarcinoma and placental site trophoblastic tumor simulating carcinoma. Am J Surg Pathol. 1998;22:1393–403.

    Article  CAS  PubMed  Google Scholar 

  32. Jordan S, Randall LM, Karamurzin Y, Ward P, Lin F, Brewster W, Monk BJ. Differentiating squamous cell carcinoma of the cervix and epithelioid trophoblastic tumor. Int J Gynecol Cancer. 2011;21:918–22.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fadare O, Parkash V, Carcangiu ML, Hui P. Epithelioid trophoblastic tumor: clinicopathological features with an emphasis on uterine cervical involvement. Mod Pathol. 2006;19:75–82.

    Article  CAS  PubMed  Google Scholar 

  34. Mao TL, Seidman JD, Kurman RJ, Shih IM. Cyclin E and p16 immunoreactivity in epithelioid trophoblastic tumor – an aid in differential diagnosis. Am J Surg Pathol. 2006;30:1105–10.

    Article  PubMed  Google Scholar 

  35. Castle PE, Pierz A, Stoler MH. A systematic review and meta-analysis on the attribution of human papillomavirus (HPV) in neuroendocrine cancers of the cervix. Gynecol Oncol. 2018;148:422–9.

    Article  PubMed  Google Scholar 

  36. Tempfer CB, Tischoff I, Dogan A, Hilal Z, Schultheis B, Kern P, Rezniczek GA. Neuroendocrine carcinoma of the cervix: a systematic review of the literature. BMC Cancer. 2018;18:530.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burk RD, Terai M, Gravitt PE, Brinton LA, Kurman RJ, Barnes WA, et al. Distribution of human papillomavirus types 16 and 18 variants in squamous cell carcinomas and adenocarcinomas of the cervix. Cancer Res. 2003;63:7215–20.

    CAS  PubMed  Google Scholar 

  38. Quddus MR, Manna P, Sung CJ, Kerley S, Steinhoff MM, Lawrence WD. Prevalence, distribution, and viral burden of all 15 high-risk human papillomavirus types in adenosquamous carcinoma of the uterine cervix: a multiplex real-time polymerase chain reaction-based study. Hum Pathol. 2014;45:303–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lee H, Lee H, Cho YK. Cytokeratin7 and cytokeratin19 expression in high grade cervical intraepithelial neoplasm and squamous cell carcinoma and their possible association in cervical carcinogenesis. Diagn Pathol. 2017;12:18. https://doi.org/10.1186/s13000-017-0609-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jung YY, Nahm JH, Kim HS. Cytomorphological characteristics of glassy cell carcinoma of the uterine cervix: histopathological correlation and human papillomavirus genotyping. Oncotarget. 2016;7:74152–61.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Koh SS, Cassarino DS. Immunohistochemical expression of p16 in melanocytic lesions: an updated review and meta-analysis. Arch Pathol Lab Med. 2018;142:815–28.

    Article  CAS  PubMed  Google Scholar 

  42. Alexander RE, Hu Y, Kum JB, Montironi R, Lopez-Beltran A, Maclennan GT, et al. p16 expression is not associated with human papillomavirus in urinary bladder squamous cell carcinoma. Mod Pathol. 2012;25:1526–33.

    Article  CAS  PubMed  Google Scholar 

  43. Rambau PF, Vierkant RA, Intermaggio MP, Kelemen LE, Goodman MT, Herpel E, et al. Association of p16 expression with prognosis varies across ovarian carcinoma histotypes: an Ovarian Tumor Tissue Analysis Consortium study. J Pathol Clin Res. 2018;4:250–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yemelyanova A, Ji H, Shih I, Wang TL, Wu LS, Ronnett BM. Utility of p16 expression for distinction of uterine serous carcinomas from endometrial endometrioid and endocervical adenocarcinomas: immunohistochemical analysis of 201 cases. Am J Surg Pathol. 2009;33:1504–14.

    Article  PubMed  Google Scholar 

  45. El-Bahrawy M. Expression of p16 in post-radiotherapy cervical biopsies. Histopathology. 2011;58:1174–6.

    Article  PubMed  Google Scholar 

  46. Munger K, Gwin TK, McLaughlin-Drubin M. p16 in HPV-associated cancers. Oncotarget. 2013;4:1864–5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Klaes R, Benner A, Friedrich T, Ridder R, Herrington S, Jenkins D, et al. p16INK4a immunohistochemistry improves interobserver agreement in the diagnosis of cervical intraepithelial neoplasia. Am J Surg Pathol. 2002;26:1389–99.

    Article  PubMed  Google Scholar 

  48. Darragh TM, Colgan TJ, Thomas Cox J, Heller DS, Henry MR, Luff RD, et al. The Lower Anogenital Squamous Terminology Standardization Project for HPV-associated lesions: background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Int J Gynecol Pathol. 2013;32:76–115.

    Article  PubMed  Google Scholar 

  49. Rodríguez-Carunchio L, Soveral I, Steenbergen RDM, Torné A, Martinez S, Fusté P, et al. HPV-negative carcinoma of the uterine cervix: a distinct type of cervical cancer with poor prognosis. BJOG. 2015;122:119–27.

    Article  PubMed  Google Scholar 

  50. Pirog EC. Cervical adenocarcinoma: diagnosis of human papillomavirus-positive and human papillomavirus-negative tumors. Arch Pathol Lab Med. 2017;141:1653–67.

    Article  CAS  PubMed  Google Scholar 

  51. Mills AM, Dirks DC, Poulter MD, Mills SE, Stoler MH. HR-HPV E6/E7 mRNA in situ hybridization: Validation against PCR, DNA in situ hybridization, and p16 immunohistochemistry in 102 samples of cervical, vulvar, anal, and head and neck neoplasia. Am J Surg Pathol. 2017;41:607–15.

    Article  PubMed  Google Scholar 

  52. Rooper LM, Gandhi M, Bishop JA, Westra WH. RNA in-situ hybridization is a practical and effective method for determining HPV status of oropharyngeal squamous cell carcinoma including discordant cases that are p16 positive by immunohistochemistry but HPV negative by DNA in-situ hybridization. Oral Oncol. 2016;55:11–6.

    Article  CAS  PubMed  Google Scholar 

  53. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, et al., editors. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  54. Van De Putte G, Lie AK, Vach W, Baekelandt M, Kristensen GB. Risk grouping in stage IB squamous cell cervical carcinoma. Gynecol Oncol. 2005;99:106–12.

    Article  PubMed  Google Scholar 

  55. Delgado G, Bundy BN, Fowler WC, Stehman FB, Sevin B, Creasman WT, et al. A prospective surgical pathological study of stage I squamous carcinoma of the cervix: a Gynecologic Oncology Group study. Gynecol Oncol. 1989;35:314–20.

    Article  CAS  PubMed  Google Scholar 

  56. Ryu SY, Kim MH, Nam BH, Lee TS, Song ES, Park CY, et al. Intermediate-risk grouping of cervical cancer patients treated with radical hysterectomy: a Korean Gynecologic Oncology Group study. Br J Cancer. 2014;110:278–85.

    Article  CAS  PubMed  Google Scholar 

  57. Samlal RA, van der Velden J, Ten Kate FJ, Schilthuis MS, Hart AA, Lammes FB. Surgical pathologic factors that predict recurrence in stage IB and IIA cervical carcinoma patients with negative pelvic lymph nodes. Cancer. 1997;80:1234–40.

    Article  CAS  PubMed  Google Scholar 

  58. Kodama J, Fukushima C, Kusumoto T, Nakamura K, Seki N, Hongo A, Hiramatsu Y. Stage IB1 cervical cancer patients with an MRI-measured tumor size < or = 2 cm might be candidates for less-radical surgery. Eur J Gynaecol Oncol. 2013;34:39–41.

    CAS  PubMed  Google Scholar 

  59. Kodama J, Mizutani Y, Hongo A, Yoshinouchi M, Kudo T, Okuda H. Optimal surgery and diagnostic approach of stage IA2 squamous cell carcinoma of the cervix. Eur J Obstet Gynecol Reprod Biol. 2002;101:192–5.

    Article  PubMed  Google Scholar 

  60. Horn L-C, Bilek K, Fischer U, Einenkel J, Hentschel B. A cut-off value of 2 cm in tumor size is of prognostic value in surgically treated FIGO stage IB cervical cancer. Gynecol Oncol. 2014;134:42–6.

    Article  PubMed  Google Scholar 

  61. Wagner AE, Pappas L, Ghia AJ, Gaffney DK. Impact of tumor size on survival in cancer of the cervix and validation of stage IIA1 and IIA2 subdivisions. Gynecol Oncol. 2013;129:517–21.

    Article  PubMed  Google Scholar 

  62. Day E, Duffy S, Bryson G, Syed S, Shanbhag S, Burton K, et al. Multifocal FIGO stage IA1 squamous carcinoma of the cervix: criteria for Identification, staging, and its good clinical outcome. Int J Gynecol Pathol. 2016;35:467–74.

    Article  CAS  PubMed  Google Scholar 

  63. McIlwaine P, Nagar H, McCluggage WG. Multifocal FIGO stage 1a1 cervical squamous carcinomas have an extremely good prognosis equivalent to unifocal lesions. Int J Gynecol Pathol. 2014;33:213–7.

    Article  PubMed  Google Scholar 

  64. Wittekind C, Brierley JD, Lee A, van Eycken E, editors. TNM supplement: a commentary on uniform use. 5th ed. Hoboken, NJ: Wiley-Blackwell; 2019.

    Google Scholar 

  65. Sakuragi N, Takeda N, Hareyama H, Fujimoto T, Todo Y, Okamoto K, et al. A multivariate analysis of blood vessel and lymph vessel invasion as predictors of ovarian and lymph node metastases in patients with cervical carcinoma. Cancer. 2000;88:2578–83.

    Article  CAS  PubMed  Google Scholar 

  66. Creasman WT, Morrow CP, Bundy BN, Homesley HD, Graham JE, Heller PB. Surgical pathologic spread patterns of endometrial cancer. A Gynecologic Oncology Group Study. Cancer. 1987;60:2035–41.

    Article  CAS  PubMed  Google Scholar 

  67. Pallavi VR, Devi KU, Mukherjee G, Ramesh C, Bafna UD. Relationship between lymph node metastases and histopathological parameters in carcinoma cervix: a multivariate analysis. J Obstet Gynaecol. 2012 Jan;32(1):78–80.

    Article  CAS  PubMed  Google Scholar 

  68. Bhatla N, Berek JS, Cuello Fredes M, Denny LA, Grenman S, Karunaratne K, et al. Revised FIGO staging for carcinoma of the cervix uteri. Int J Gynecol Obstet. 2019;145:129–35.

    Article  Google Scholar 

  69. Bhatla N, Aoki D, Sharma DN, Sankaranarayanan R. Cancer of the cervix uteri. Int J Gynecol Obstet. 2018;143:22–36.

    Article  Google Scholar 

  70. Chandacham A, Charoenkwan K, Siriaunkgul S, Srisomboon J, Suprasert P, Phongnarisorn C, et al. Extent of lymphovascular space invasion and risk of pelvic lymph node metastases in stage IB1 cervical cancer. J Med Assoc Thail. 2005;88(Suppl 2):S31–6.

    Google Scholar 

  71. Sevin B-U, Nadji M, Averette HE, Hilsenbeck S, Smith D, Lampe B. Microinvasive carcinoma of the cervix. Cancer. 1992;70:2121–8.

    Article  CAS  PubMed  Google Scholar 

  72. Elliott P, Coppleson M, Russell P, Liouros P, Carter J, MacLeod C, Jones M. Early invasive (FIGO stage IA) carcinoma of the cervix: a clinico-pathologic study of 476 cases. Int J Gynecol Cancer. 2000;10:42–52.

    Article  PubMed  Google Scholar 

  73. Cui L, Shi Y, Zhang GN. Perineural invasion as a prognostic factor for cervical cancer: a systematic review and meta-analysis. Arch Gynecol Obstet. 2015;292:13–9.

    Article  CAS  PubMed  Google Scholar 

  74. Cho HC, Kim H, Cho HY, Kim K, No JH, Kim YB. Prognostic significance of perineural invasion in cervical cancer. Int J Gynecol Pathol. 2013;32:228–33.

    Article  CAS  PubMed  Google Scholar 

  75. Horn L-C, Meinel A, Fischer U, Bilek K, Hentschel B. Perineural invasion in carcinoma of the cervix uteri – prognostic impact. J Cancer Res Clin Oncol. 2010;136:1557–62.

    Article  PubMed  Google Scholar 

  76. Shimada M, Kigawa J, Nishimura R, Yamaguchi S, Kuzuya K, Nakanishi T, et al. Ovarian metastasis in carcinoma of the uterine cervix. Gynecol Oncol. 2006;101:234–7.

    Article  PubMed  Google Scholar 

  77. Holman LL, Levenback CF, Frumovitz M. Sentinel lymph node evaluation in women with cervical cancer. J Minim Invasive Gynecol. 2014;21:540–5.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Diaz JP, Gemignani ML, Pandit-Taskar N, Park KJ, Murray MP, Chi DS, et al. Sentinel lymph node biopsy in the management of early-stage cervical carcinoma. Gynecol Oncol. 2011;120:347–52.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Guani B, Dorez M, Magaud L, Buenerd A, Lecuru F, Mathevet P. Impact of micrometastasis or isolated tumor cells on recurrence and survival in patients with early cervical cancer: SENTICOL Trial. Int J Gynecol Cancer. 2019;29:447–52.

    Article  PubMed  Google Scholar 

  80. Delomenie M, Bonsang-Kitzis H, Bats AS, Ngo C, Balaya V, Xuan HTN, et al. The clinical implication of lymph nodes micrometastases and isolated tumor cells in patients with cervical cancer: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2019;241:71–6.

    Article  CAS  PubMed  Google Scholar 

  81. McCann GA, Taege SK, Boutsicaris CE, Phillips GS, Eisenhauer EL, Fowler JM, et al. The impact of close surgical margins after radical hysterectomy for early-stage cervical cancer. Gynecol Oncol. 2013;128:44–8.

    Article  PubMed  Google Scholar 

  82. Viswanathan AN, Lee H, Hanson E, Berkowitz RS, Crum CP. Influence of margin status and radiation on recurrence after radical hysterectomy in stage IB cervical cancer. Int J Radiat Oncol Biol Phys. 2006;65:1501–7.

    Article  PubMed  Google Scholar 

  83. Khanna N, Rauh LA, Lachiewicz MP, Horowitz IR. Margins for cervical and vulvar cancer. J Surg Oncol. 2016;113:304–9.

    Article  PubMed  Google Scholar 

  84. Corrigendum to “Revised FIGO staging for carcinoma of the cervix uteri” [Int J Gynecol Obstet 145(2019) 129–135]. Int J Gynaecol Obstet. 2019;147(2):279–80.

    Google Scholar 

  85. Landoni F, Maneo A, Cormio G, Perego P, Milani R, Caruso O, Mangioni C. Class II versus class III radical hysterectomy in stage IB-IIA cervical cancer: a prospective randomized study. Gynecol Oncol. 2001;80:3–12.

    Article  CAS  PubMed  Google Scholar 

  86. Landoni F, Colombo A, Milani R, Placa F, Zanagnolo V, Mangioni C. Randomized study between radical surgery and radiotherapy for the treatment of stage IB–IIA cervical cancer: 20-year update. J Gynecol Oncol. 2017;28:e34.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Landoni F, Maneo A, Colombo A, Placa F, Milani R, Perego P, et al. Randomised study of radical surgery versus radiotherapy for stage Ib-IIa cervical cancer. Lancet. 1997;350:535–40.

    Article  CAS  PubMed  Google Scholar 

  88. Grigsby PW, Perez CA. Radiotherapy alone for medically inoperable carcinoma of the cervix: stage IA and carcinoma in situ. Int J Radiat Oncol Biol Phys. 1991;21:375–8.

    Article  CAS  PubMed  Google Scholar 

  89. Eifel PJ, Morris M, Wharton JT, Oswald MJ. The influence of tumor size and morphology on the outcome of patients with FIGO stage IB squamous cell carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys. 1994;29:9–16.

    Article  CAS  PubMed  Google Scholar 

  90. Moore DH, Blessing JA, McQuellon RP, Thaler HT, Cella D, Benda J, et al. Phase III study of cisplatin with or without paclitaxel in stage IVB, recurrent, or persistent squamous cell carcinoma of the cervix: A Gynecologic Oncology Group study. J Clin Oncol. 2004;22:3113–9.

    Article  CAS  PubMed  Google Scholar 

  91. Frenel JS, Le Tourneau C, O'Neil BH, Ott PA, Piha-Paul SA, Gomez-Roca CA, et al. Pembrolizumab in patients with advanced cervical squamous cell cancer: Preliminary results from the phase Ib KEYNOTE-028 study. J Clin Oncol. 2016;34(suppl):5515. https://doi.org/10.1200/JCO.2016.34.15_suppl.5515.

    Article  Google Scholar 

  92. Frenel JS, Le Tourneau C, O’Neil B, Ott PA, Piha-Paul SA, Gomez-Roca CA, et al. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: results from the phase Ib KEYNOTE-028 Trial. J Clin Oncol. 2017;35:4035–41.

    Article  CAS  PubMed  Google Scholar 

  93. Borcoman E, Le Tourneau C. Pembrolizumab in cervical cancer: latest evidence and clinical usefulness. Ther Adv Med Oncol. 2017;9:431–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. US Food and Drug Administration. FDA approves pembrolizumab for advanced cervical cancer with disease progression during or after chemotherapy. 2018. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm610572.htm.

  95. Chung HC, Ros W, Delord JP, Perets R, Italiano A, Shapira-Frommer R, et al. Efficacy and safety of pembrolizumab in previously treated advanced cervical cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol. 2019;37:1470–8.

    Article  CAS  PubMed  Google Scholar 

  96. Kulangara K, Hanks DA, Waldroup S, Peltz L, Shah S, Roach C, et al. Development of the combined positive score (CPS) for the evaluation of PD-L1 in solid tumors with the immunohistochemistry assay PD-L1 IHC 22C3 pharmDx. J Clin Oncol. 2017;35:e14589.

    Article  Google Scholar 

  97. Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25:3753–8.

    Article  CAS  PubMed  Google Scholar 

  98. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chinn Z, Stoler MH, Mills AM. PD-L1 and IDO expression in cervical and vulvar invasive and intraepithelial squamous neoplasias: implications for combination immunotherapy. Histopathology. 2019;74:256–68.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne M. Mills .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Crawford, M.P., Jenkins, T.M., Mills, A.M. (2021). Epithelial Malignant Tumors of the Cervix: Squamous Carcinoma. In: Soslow, R.A., Park, K.J., Stolnicu, S. (eds) Atlas of Diagnostic Pathology of the Cervix. Springer, Cham. https://doi.org/10.1007/978-3-030-49954-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49954-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49953-2

  • Online ISBN: 978-3-030-49954-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics