Skip to main content

Coordination of Fungal Secondary Metabolism and Development

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

Abstract

Fungi are ubiquitous lifeforms that colonize a wide range of diverse environments. Many of them have a saprophytic lifestyle and are principal decomposers of our ecosystem. Fungi play an important role in our food and pharmaceutical industries, but their appearance can also be harmful to us. They are responsible for many diseases in humans and animals, ranging from allergies to life-threatening intoxications and mycoses. The infection of plants and the contamination of crops lead to high economic losses and pose a threat to food supply and safety. Fungal developmental programs, including the formation of infection structures, are closely linked to the production of specific chemicals, called secondary metabolites. This chapter describes these interrelated processes and their regulation, including the genetic networks linking transcriptional to epigenetic control of gene expression, protein degradation machineries, and the autophagy membrane trafficking pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Ascus = skin bag.

  2. 2.

    Virulence = severity of a disease caused by a pathogen.

  3. 3.

    Pathogenicity = ability of a pathogen to cause a disease.

  4. 4.

    H3R4 = histone H4 modified at arginine residue 3 (R3).

  5. 5.

    H3K4Me3 = histone H3 trimethylated (Me3) at lysine residue 4 (K4).

  6. 6.

    lid = removable or hinged cover of a container, here: the cover of the proteasome core.

References

  • Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhvaryu KK, Morris SA, Strahl BD, Selker EU (2005) Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot Cell 4:1455–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed YL, Gerke J, Park H-S, Bayram Ö, Neumann P, Ni M, Dickmanns A, Kim SC, Yu J-H, Braus GH, Ficner R (2013) The velvet family of fungal regulators contains a DNA-binding domain structurally similar to NF-κB. PLoS Biol 11:e1001750

    PubMed  PubMed Central  Google Scholar 

  • Alberti F, Foster GD, Bailey AM (2017) Natural products from filamentous fungi and production by heterologous expression. Appl Microbiol Biotechnol 101:493–500

    CAS  PubMed  Google Scholar 

  • Amerik AY, Li S, Hochstrasser M (2000) Analysis of the deubiquitinating enzymes of the yeast Saccharomyces cerevisiae. Biol Chem 381:981–992

    CAS  PubMed  Google Scholar 

  • Andersen MR, Nielsen JB, Klitgaard A, Petersen LM, Zachariasen M, Hansen TJ, Blicher LH, Gotfredsen CH, Larsen TO, Nielsen KF, Mortensen UH (2013) Accurate prediction of secondary metabolite gene clusters in filamentous fungi. Proc Natl Acad Sci USA 110:E99–E107

    CAS  PubMed  Google Scholar 

  • Bachand F (2007) Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell 6:889–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahn Y-S, Xue C, Idnurm A, Rutherford JC, Heitman J, Cardenas ME (2007) Sensing the environment: lessons from fungi. Nat Rev Microbiol 5:57–69

    CAS  PubMed  Google Scholar 

  • Barth E, Hübler R, Baniahmad A, Marz M (2016) The evolution of COP9 signalosome in unicellular and multicellular organisms. Genome Biol Evol 8:1279–1289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartoszewska M, Kiel JAKW, Bovenberg RAL, Veenhuis M, van der Klei IJ (2011) Autophagy deficiency promotes beta-lactam production in Penicillium chrysogenum. Appl Environ Microbiol 77:1413–1422

    CAS  PubMed  Google Scholar 

  • Bauer I, Graessle S, Loidl P, Hohenstein K, Brosch G (2010) Novel insights into the functional role of three protein arginine methyltransferases in Aspergillus nidulans. Fungal Genet Biol 47:551–561

    CAS  PubMed  Google Scholar 

  • Bauer I, Varadarajan D, Pidroni A, Gross S, Vergeiner S, Faber B, Hermann M, Tribus M, Brosch G, Graessle S, Turgeon EBG (2016) A class 1 histone deacetylase with potential as an antifungal target. MBio 7:e00831–e00816

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram Ö, Braus GH (2012) Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36:1–24

    CAS  PubMed  Google Scholar 

  • Bayram O, Biesemann C, Krappmann S, Galland P, Braus GH (2008a) More than a repair enzyme: Aspergillus nidulans photolyase-like CryA is a regulator of sexual development. Mol Biol Cell 19:3254–3262

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayram Ö, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu J, Braus GH (2008b) VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320:1504–1506

    CAS  PubMed  Google Scholar 

  • Bayram Ö, Krappmann S, Seiler S, Vogt N, Braus GH (2008c) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    CAS  PubMed  Google Scholar 

  • Bayram Ö, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    CAS  PubMed  Google Scholar 

  • Bayram Ö, Feussner K, Dumkow M, Herrfurth C, Feussner I, Braus GH (2016) Changes of global gene expression and secondary metabolite accumulation during light-dependent Aspergillus nidulans development. Fungal Genet Biol 87:30–53

    CAS  PubMed  Google Scholar 

  • Becker K, Ziemons S, Lentz K, Freitag M, Kück U (2016) Genome-wide chromatin immunoprecipitation sequencing analysis of the Penicillium chrysogenum velvet protein PcVelA identifies methyltransferase PcLlmA as a novel downstream regulator of fungal development. mSphere 1:e00149–e00116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beckmann EA, Köhler AM, Meister C, Christmann M, Draht OW, Rakebrandt N, Valerius O, Braus GH (2015) Integration of the catalytic subunit activates deneddylase activity in vivo as final step in fungal COP9 signalosome assembly. Mol Microbiol 97:110–124

    CAS  PubMed  Google Scholar 

  • Bicocca VT, Ormsby T, Adhvaryu KK, Honda S, Selker EU (2018) ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin. Elife 7:e41497

    PubMed  PubMed Central  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R, Purschwitz J, Veith D, Frankenberg-Dinkel N, Fischer R (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    CAS  PubMed  Google Scholar 

  • Bode HB, Bethe B, Höfs R, Zeeck A (2002) Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem 3:619–627

    CAS  PubMed  Google Scholar 

  • Bok JW, Keller NP (2016) Insight into fungal secondary metabolism from ten years of LaeA research. In: Hoffmeister D (ed) Biochemistry and molecular biology: the Mycota (A comprehensive treatise on fungi as experimental systems for basic and applied research), vol III. Springer International Publishing, Cham, pp 21–29

    Google Scholar 

  • Braus GH, Irniger S, Bayram Ö (2010) Fungal development and the COP9 signalosome. Curr Opin Microbiol 13:672–676

    CAS  PubMed  Google Scholar 

  • Brodhun F, Feussner I (2011) Oxylipins in fungi. FEBS J 278:1047–1063

    CAS  PubMed  Google Scholar 

  • Brosch G, Loidl P, Graessle S (2008) Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 32:409–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown NA, Schrevens S, van Dijck P, Goldman GH (2018) Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control. Nat Microbiol 3:402–414

    CAS  PubMed  Google Scholar 

  • Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429:3500–3524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Budovskaya Y, Stephan J, Reggiori F, Klionsky DJ, Herman PK (2004) The Ras/PKA signaling pathway regulates an early step of the autophagy process in Saccharomyces cerevisiae. J Biol Chem 279:20663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    CAS  PubMed  Google Scholar 

  • Busch S, Schwier EU, Nahlik K, Bayram Ö, Helmstaedt K, Draht OW, Krappmann S, Valerius O, Lipscomb WN, Braus GH (2007) An eight-subunit COP9 signalosome with an intact JAMM motif is required for fungal fruit body formation. Proc Natl Acad Sci USA 104:8089–8094

    CAS  PubMed  Google Scholar 

  • Cassini A, Diaz Högberg L, Plachouras D, Quattrocchi A, Hoxha A, Skov Simonsen G (2019) Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis 19:56–66

    Google Scholar 

  • Castrillo M, García-Martínez J, Avalos J (2013) Light-dependent functions of the Fusarium fujikuroi CryD DASH cryptochrome in development and secondary metabolism. Appl Environ Microbiol 79:2777–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A (2016) The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 17:327

    PubMed  PubMed Central  Google Scholar 

  • Chanda A, Roze L, Kang S, Artymovich KA, Hicks GR, Raikhel N, Calvo AM, Linz JE (2009) A key role for vesicles in fungal secondary metabolism. Proc Natl Acad Sci USA 106:19533–19538

    CAS  PubMed  Google Scholar 

  • Chiang YM, Oakley CE, Ahuja M, Entwistle R, Schultz A, Chang S-L, Sung CT, Wang CCC, Oakley BR (2013) An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. J Am Chem Soc 135:7720–7731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnici JL, Fu C, Caccamise LM, Arnold JW, Free SJ (2014) Neurospora crassa female development requires the PACC and other signal transduction pathways, transcription factors, chromatin remodeling, cell-to-cell fusion, and autophagy. PLoS One 9:e110603

    PubMed  PubMed Central  Google Scholar 

  • Choo YY, Boh BK, Lou JJW, Eng J, Leck YC, Anders B, Smith PG, Hagen T (2011) Characterization of the role of COP9 signalosome in regulating cullin E3 ubiquitin ligase activity. Mol Biol Cell 22:4706–4715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christmann M, Schmaler T, Gordon C, Huang X, Bayram Ö, Schinke J, Stumpf S, Dubiel W, Braus GH (2013) Control of multicellular development by the physically interacting deneddylases DEN1/DenA and COP9 signalosome. PLoS Genet 9:e1003275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chu X-L, Feng M-G, Ying S-H (2016) Qualitative ubiquitome unveils the potential significances of protein lysine ubiquitination in hyphal growth of Aspergillus nidulans. Curr Genet 62:191–201

    CAS  PubMed  Google Scholar 

  • Connolly LR, Smith KM, Freitag M (2013) The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 9:e1003916

    PubMed  PubMed Central  Google Scholar 

  • de la Peña AH, Goodall EA, Gates SN, Lander GC, Martin A (2018) Substrate-engaged 26S proteasome structures reveal mechanisms for ATP-hydrolysis-driven translocation. Science 362:eaav0725

    PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, Uchima CA, Anderluh G, Asadollahi M, Askin M, Barry K, Battaglia E, Bayram Ö, Benocci T, Braus-Stromeyer SA, Caldana C, Cánovas D, Cerqueira GC, Chen F, Chen W, Choi C, Clum A, dos Santos RAC, de Damásio ARL, Diallinas G, Emri T, Fekete E, Flipphi M, Freyberg S, Gallo A, Gournas C, Habgood R, Hainaut M, Harispe ML, Henrissat B, Hildén KS, Hope R, Hossain A, Karabika E, Karaffa L, Karányi Z, Kraševec N, Kuo A, Kusch H, LaButti K, Lagendijk EL, Lapidus A, Levasseur A, Lindquist E, Lipzen A, Logrieco AF, MacCabe A, Mäkelä MR, Malavazi I, Melin P, Meyer V, Mielnichuk N, Miskei M, Molnár ÁP, Mulé G, Ngan CY, Orejas M, Orosz E, Ouedraogo JP, Overkamp KM, Park H-S, Perrone G, Piumi F, Punt PJ, Ram AFJ, Ramón A, Rauscher S, Record E, Riaño-Pachón DM, Robert V, Röhrig J, Ruller R, Salamov A, Salih NS, Samson RA, Sándor E, Sanguinetti M, Schütze T, Sepčić K, Shelest E, Sherlock G, Sophianopoulou V, Squina FM, Sun H, Susca A, Todd RB, Tsang A, Unkles SE, van de Wiele N, van Rossen-Uffink D, de Oliveira JVC, Vesth TC, Visser J, Yu J-H, Zhou M, Andersen MR, Archer DB, Baker SE, Benoit I, Brakhage AA, Braus GH, Fischer R, Frisvad JC, Goldman GH, Houbraken J, Oakley B, Pócsi I, Scazzocchio C, Seiboth B, vanKuyk PA, Wortman J, Dyer PS, Grigoriev IV (2017) Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus Aspergillus. Genome Biol 18:28

    Google Scholar 

  • Draht O, Busch S, Hofmann K, Braus-Stromeyer S, Helmstaedt K, Goldman G, Braus G (2007) Amino acid supply of Aspergillus. In: Osmani SA, Goldman GH (eds) The Aspergilli: genomics, medical aspects, biotechnology, and research methods. CRC Press/Taylor & Francis Group, Boca Raton, FL, pp 143–175

    Google Scholar 

  • Du L, Sánchez C, Shen B (2001) Hybrid peptide–polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab Eng 3:78–95

    CAS  PubMed  Google Scholar 

  • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA (2008) Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006

    CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada AF, Avalos J (2008) The white collar protein WcoA of Fusarium fujikuroi is not essential for photocarotenogenesis, but is involved in the regulation of secondary metabolism and conidiation. Fungal Genet Biol 45:705–718

    CAS  PubMed  Google Scholar 

  • Fang W, Price MS, Toffaletti DL, Tenor J, Betancourt-Quiroz M, Price JL, Pan W, Liao W, Perfect JR (2012) Pleiotropic effects of deubiquitinating enzyme Ubp5 on growth and pathogenesis of Cryptococcus neoformans. PLoS One 7:38326

    Google Scholar 

  • Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH (2009) Biosynthetic pathway transcription in Aspergillus niger. J Ind Microbiol Biotechnol 36:1199–1213

    CAS  PubMed  Google Scholar 

  • Fischer R, Aguirre J, Herrera-Estrella A, Corrochano LM (2016) The complexity of fungal vision. Microbiol Spectr 4:1–22

    Google Scholar 

  • Flick K, Kaiser P (2013) Set them free: F-box protein exchange by Cand1. Cell Res 23:870–871

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gacek-Matthews A, Noble LM, Gruber C, Berger H, Sulyok M, Marcos AT, Strauss J, Andrianopoulos A (2015) KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 96:839–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gacek-Matthews A, Berger H, Sasaki T, Wittstein K, Gruber C, Lewis ZA, Strauss J (2016) KdmB, a jumonji histone H3 demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genet 12:e1006222

    PubMed  PubMed Central  Google Scholar 

  • García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A (2016) The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light. Fungal Biol 120:500–512

    PubMed  Google Scholar 

  • García-Martínez J, Brunk M, Avalos J, Terpitz U (2015) The CarO rhodopsin of the fungus Fusarium fujikuroi is a light-driven proton pump that retards spore germination. Sci Rep 5:7798

    PubMed  PubMed Central  Google Scholar 

  • Gerke J, Braus GH (2014) Manipulation of fungal development as source of novel secondary metabolites for biotechnology. Appl Microbiol Biotechnol 98:8443–8455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerke J, Bayram Ö, Feussner K, Landesfeind M, Shelest E, Feussner I, Braus GH (2012) Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl Environ Microbiol 78:8234–8244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gessler NN, Aver AA, Belozerskaya TA (2007) Reactive oxygen species in regulation of fungal development. Biochemist 72:1091–1109

    CAS  Google Scholar 

  • González A, Hall MN (2017) Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 36:397–408

    PubMed  PubMed Central  Google Scholar 

  • Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gressler M, Hortschansky P, Geib E, Brock M (2015) A new high-performance heterologous fungal expression system based on regulatory elements from the Aspergillus terreus terrein gene cluster. Front Microbiol 6:184

    PubMed  PubMed Central  Google Scholar 

  • Grimaldi B, Coiro P, Filetici P, Berge E, Dobosy JR, Freitag M, Selker EU, Ballario P (2006) The Neurospora crassa white collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grou CP, Pinto MP, Mendes AV, Domingues P, Azevedo JE (2015) The de novo synthesis of ubiquitin: identification of deubiquitinases acting on ubiquitin precursors. Sci Rep 5:12836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Q, Wang Z, Sun X, Ji T, Huang H, Yang Y, Zhang H, Tahir HAS, Wu L, Wu H, Gao X (2017) FvSet2 regulates fungal growth, pathogenicity, and secondary metabolism in Fusarium verticillioides. Fungal Genet Biol 107:24–30

    CAS  PubMed  Google Scholar 

  • Haahr P, Borgermann N, Guo X, Typas D, Achuthankutty D, Hoffmann S, Shearer R, Sixma TK, Mailand N (2018) ZUFSP deubiquitylates K63-linked polyubiquitin chains to promote genome stability. Mol Cell 70:165–174.e6

    CAS  PubMed  Google Scholar 

  • Haas H (2014) Fungal siderophore metabolism with a focus on Aspergillus fumigatus. Nat Prod Rep 31:1266–1276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampel M, Jakobi M, Schmitz L, Meyer U, Finkernagel F, Doehlemann G, Heimel K (2016) Unfolded protein response (UPR) regulator Cib1 controls expression of genes encoding secreted virulence factors in Ustilago maydis. PLoS One 11:e0153861

    PubMed  PubMed Central  Google Scholar 

  • Han Y, Kim M, Lee S, Yun S, Lee Y (2007) A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol Microbiol 63:768–779

    CAS  PubMed  Google Scholar 

  • Harting R, Bayram Ö, Laubinger K, Valerius O, Braus GH (2013) Interplay of the fungal sumoylation network for control of multicellular development. Mol Microbiol 90:1125–1145

    CAS  PubMed  Google Scholar 

  • He C, Baba M, Cao Y, Klionsky DJ (2008) Self-interaction is critical for Atg9 transport and function at the phagophore assembly site during autophagy. Mol Biol Cell 19:5506–5516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hedtke M, Rauscher S, Röhrig J, Rodríguez-Romero J, Yu Z, Fischer R (2015) Light-dependent gene activation in Aspergillus nidulans is strictly dependent on phytochrome and involves the interplay of phytochrome and white collar-regulated histone H3 acetylation. Mol Microbiol 97:733–745

    CAS  PubMed  Google Scholar 

  • Heimel K, Freitag J, Hampel M, Ast J, Bolker M, Kamper J (2013) Crosstalk between the unfolded protein response and pathways that regulate pathogenic development in Ustilago maydis. Plant Cell 25:4262–4277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Helmstaedt K, Schwier EU, Christmann M, Nahlik K, Tansey WP (2011) Recruitment of the inhibitor Cand1 to the cullin substrate adaptor site mediates interaction to the neddylation site. Mol Biol Cell 22:153–164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henrikson JC, Hoover AR, Joyner PM, Cichewicz RH (2009) A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org Biomol Chem 7:435–438

    CAS  PubMed  Google Scholar 

  • Herr A, Fischer R (2014) Improvement of Aspergillus nidulans penicillin production by targeting AcvA to peroxisomes. Metab Eng 25:131–139

    CAS  PubMed  Google Scholar 

  • Hiraishi H, Mochizuki M, Takagi H (2006) Enhancement of stress tolerance in Saccharomyces cerevisiae by overexpression of ubiquitin ligase Rsp5 and ubiquitin-conjugating enzymes. Biosci Biotechnol Biochem 70:2762–2765

    CAS  PubMed  Google Scholar 

  • Hoeller D, Dikic I (2016) How the proteasome is degraded. Proc Natl Acad Sci USA 113:13266–13268

    CAS  PubMed  Google Scholar 

  • Holighaus G, Rohlfs M (2018) Volatile and non-volatile fungal oxylipins in fungus-invertebrate interactions. Fungal Ecol 38:28–36

    Google Scholar 

  • Hutchins AP, Liu S, Diez D, Miranda-Saavedra D (2013) The repertoires of ubiquitinating and deubiquitinating enzymes in eukaryotic genomes. Mol Biol Evol 30:1172–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed  PubMed Central  Google Scholar 

  • Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh E, Shigemoto R, Oinuma K-I, Shimizu M, Masuo S, Takaya N (2017) Sirtuin A regulates secondary metabolite production by Aspergillus nidulans. J Gen Appl Microbiol 63:228–235

    CAS  PubMed  Google Scholar 

  • Izawa M, Takekawa O, Arie T, Teraoka T, Yoshida M, Kimura M, Kamakura T (2009) Inhibition of histone deacetylase causes reduction of appressorium formation in the rice blast fungus Magnaporthe oryzae. J Gen Appl Microbiol 55:489–498

    CAS  PubMed  Google Scholar 

  • Janevska S, Baumann L, Sieber CMK, Münsterkötter M, Ulrich J, Kämper J, Güldener U, Tudzynski B (2018) Elucidation of the two H3K36me3 histone methyltransferases Set2 and Ash1 in Fusarium fujikuroi unravels their different chromosomal targets and a major impact of Ash1 on genome stability. Genetics 208:153–171

    CAS  PubMed  Google Scholar 

  • Jöhnk B, Bayram Ö̈, Abelmann A, Heinekamp T, Mattern DJ, Brakhage AA, Jacobsen ID, Valerius O, Braus GH (2016) SCF ubiquitin ligase F-box protein Fbx15 controls nuclear co-repressor localization, stress response and virulence of the human pathogen Aspergillus fumigatus. PLoS Pathog 12:1–10

    Google Scholar 

  • Kawauchi M, Iwashita K (2014) Functional analysis of histone deacetylase and its role in stress response, drug resistance and solid-state cultivation in Aspergillus oryzae. J Biosci Bioeng 118:172–176

    CAS  PubMed  Google Scholar 

  • Kawauchi M, Nishiura M, Iwashita K (2013) Fungal-specific sirtuin HstD coordinates secondary metabolism and development through control of LaeA. Eukaryot Cell 12:1087–1096

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller NP (2018) Fungal secondary metabolism: regulation, function and drug discovery. Nat Rev Microbiol 17:167–180

    Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    CAS  PubMed  Google Scholar 

  • Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci USA 106:15967–15972

    CAS  PubMed  Google Scholar 

  • Kolog Gulko M, Heinrich G, Gross C, Popova B, Valerius O, Neumann P, Ficner R, Braus GH (2018) Sem1 links proteasome stability and specificity to multicellular development. PLoS Genet 14:e1007141

    PubMed  PubMed Central  Google Scholar 

  • Komander D, Clague MJ, Urbé S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10:550–563

    CAS  PubMed  Google Scholar 

  • Kong X, van Diepeningen AD, van der Lee TAJ, Waalwijk C, Xu J, Xu J, Zhang H, Chen W, Feng J (2018) The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity. Front Microbiol 9:654

    PubMed  PubMed Central  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    CAS  PubMed  Google Scholar 

  • Krappmann S, Jung N, Medic B, Busch S, Prade RA, Braus GH (2006) The Aspergillus nidulans F-box protein GrrA links SCF activity to meiosis. Mol Microbiol 61:76–88

    CAS  PubMed  Google Scholar 

  • Kumar D, Barad S, Chen Y, Luo X, Tannous J, Dubey A, Glam Matana N, Tian S, Li B, Keller N, Prusky D (2016) LaeA regulation of secondary metabolism modulates virulence in Penicillium expansum and is mediated by sucrose. Mol Plant Pathol 18:1150–1163

    Google Scholar 

  • Künzler M (2018) How fungi defend themselves against microbial competitors and animal predators. PLoS Pathog 14:e1007184

    PubMed  PubMed Central  Google Scholar 

  • Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482:186–191

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lara-Ortíz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    PubMed  Google Scholar 

  • Leach MD, Stead DA, Argo E, Maccallum DM, Brown AJP (2011) Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans. Mol Microbiol 79:1574–1593

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee Y-H, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23:425–433

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Oh J-H, Keats Shwab E, Dagenais TRT, Andes D, Keller NP (2009) HdaA, a class 2 histone deacetylase of Aspergillus fumigatus, affects germination and secondary metabolite production. Fungal Genet Biol 46:782–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Tumolo JM, Ehlinger AC, Jernigan KK, Qualls-Histed SJ, Hsu P-C, Mcdonald H, Chazin WJ, Macgurn JA (2017) Ubiquitin turnover and endocytic trafficking in yeast are regulated by Ser57 phosphorylation of ubiquitin. Elife 6:e29176

    PubMed  PubMed Central  Google Scholar 

  • Lestrade PP, Bentvelsen RG, Schauwvlieghe AFAD, Schalekamp S, van der Velden WJFM, Kuiper EJ, van Paassen J, van der Hoven B, van der Lee HA, Melchers WJG, de Haan AF, van der Hoeven HL, Rijnders BJA, van der Beek MT, Verweij PE (2019) Voriconazole resistance and mortality in invasive aspergillosis: a multicenter retrospective cohort study. Clin Infect Dis 68:1463–1471

    Google Scholar 

  • Li W, Li J, Bao J (2012) Microautophagy: lesser-known self-eating. Cell Mol Life Sci 69:1125–1136

    CAS  PubMed  Google Scholar 

  • Liakopoulos D, Doenges G, Matuschewski K, Jentsch S (1998) A novel protein modification pathway related to the ubiquitin system. EMBO J 17:2208–2214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang L, Liu Y, Yang K, Lin G, Xu Z, Lan H, Wang X, Wang S (2017) The putative histone methyltransferase DOT1 regulates aflatoxin and pathogenicity attributes in Aspergillus flavus. Toxins 9:232

    PubMed Central  Google Scholar 

  • Lim FY, Won TH, Raffa N, Baccile JA, Wisecaver J, Rokas A, Schroeder FC, Keller NP (2018) Fungal isocyanide synthases and xanthocillin biosynthesis in Aspergillus fumigatus. MBio 9:e00785–e00718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lind AL, Wisecaver JH, Smith TD, Feng X, Calvo AM, Rokas A (2015) Examining the evolution of the regulatory circuit controlling secondary metabolism and development in the fungal genus Aspergillus. PLoS Genet 11:e1005096

    PubMed  PubMed Central  Google Scholar 

  • Lind AL, Smith TD, Saterlee T, Calvo AM, Rokas A (2016) Regulation of secondary metabolism by the velvet complex is temperature-responsive in Aspergillus. G3 6:4023–4033

    CAS  PubMed  Google Scholar 

  • Lingaraju GM, Bunker RD, Cavadini S, Hess D, Hassiepen U, Renatus M, Fischer ES, Thomä NH (2014) Crystal structure of the human COP9 signalosome. Nature 512:161–165

    CAS  PubMed  Google Scholar 

  • Liu C, Lu F, Cui X, Cao X (2010a) Histone methylation in higher plants. Annu Rev Plant Biol 61:395–420

    CAS  PubMed  Google Scholar 

  • Liu T-B, Liu X-H, Lu J-P, Zhang L, Min H, Lin F-C (2010b) The cysteine protease MoAtg4 interacts with MoAtg8 and is required for differentiation and pathogenesis in Magnaporthe oryzae. Autophagy 6:74–85

    CAS  PubMed  Google Scholar 

  • Liu T, Wang Y, Stukes S, Chen Q, Casadevall A, Xue C (2011) The F-Box protein Fbp1 regulates sexual reproduction and virulence in Cryptococcus neoformans. Eukaryot Cell 10:791–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Reitsma JM, Mamrosh JL, Zhang Y, Straube R, Deshaies RJ (2018) Cand1-mediated adaptive exchange mechanism enables variation in F-box protein expression. Mol Cell 69:773–786.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L, Tollot M, Zuccaro A, Reissmann S, Kahmann R (2015) Fungal effectors and plant susceptibility. Annu Rev Plant Biol 66:513–545

    CAS  PubMed  Google Scholar 

  • López-Díaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López-Berges MS (2018) Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol 19:440–453

    PubMed  Google Scholar 

  • Lynch-Day MA, Klionsky DJ (2010) The Cvt pathway as a model for selective autophagy. FEBS Lett 584:1359–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Macheleidt J, Mattern DJ, Fischer J, Netzker T, Weber J, Schroeckh V, Valiante V, Brakhage AA (2016) Regulation and role of fungal secondary metabolites. Annu Rev Genet 50:371–392

    CAS  PubMed  Google Scholar 

  • Magotra A, Kumar M, Kushwaha M, Awasthi P, Raina C, Gupta AP, Shah BA, Gandhi SG, Chaubey A (2017) Epigenetic modifier induced enhancement of fumiquinazoline C production in Aspergillus fumigatus (GA-L7): an endophytic fungus from Grewia asiatica L. AMB Express 7:43

    PubMed  PubMed Central  Google Scholar 

  • Malzahn E, Ciprianidis S, Káldi K, Schafmeier T, Brunner M (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772

    Google Scholar 

  • Marín I (2009) Diversification of the cullin family. BMC Evol Biol 11:1–11

    Google Scholar 

  • Matsuda Y, Abe I (2016) Biosynthesis of fungal meroterpenoids. Nat Prod Rep 33:26–53

    CAS  PubMed  Google Scholar 

  • McGrath JP, Jentsch S, Varshavsky A (1991) Uba1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J 10:227–236

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meeks JJ, Shilatifard A (2017) Multiple roles for the MLL/COMPASS family in the epigenetic regulation of gene expression and in cancer. Annu Rev Cancer Biol 1:425–446

    Google Scholar 

  • Meijer WH, Gidijala L, Fekken S, Kiel JAKW, van den Berg MA, Lascaris R, Bovenberg RAL, van der Klei IJ (2010) Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum. Appl Environ Microbiol 76:5702–5709

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meister C, Gulko MK, Köhler AM, Braus GH (2016) The devil is in the details: comparison between COP9 signalosome (CSN) and the LID of the 26S proteasome. Curr Genet 62:129–136

    CAS  PubMed  Google Scholar 

  • Meyer V, Andersen MR, Brakhage AA, Braus GH, Caddick MX, Cairns TC, de Vries RP, Haarmann T, Hansen K, Hertz-Fowler C, Krappmann S, Mortensen UH, Peñalva MA, Ram AFJ, Head RM (2016) Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biol Biotechnol 3:6

    PubMed  PubMed Central  Google Scholar 

  • Mukaiyama H, Nakase M, Nakamura T, Kakinuma Y, Takegawa K (2010) Autophagy in the fission yeast Schizosaccharomyces pombe. FEBS Lett 584:1327–1334

    CAS  PubMed  Google Scholar 

  • Nahlik K, Dumkow M, Bayram Ö, Helmstaedt K, Busch S, Valerius O, Gerke J, Hoppert M, Schwier E, Opitz L, Westermann M, Grond S, Feussner K, Goebel C, Kaever A, Meinicke P, Feussner I, Braus GH (2010) The COP9 signalosome mediates transcriptional and metabolic response to hormones, oxidative stress protection and cell wall rearrangement during fungal development. Mol Microbiol 78:964–979

    CAS  PubMed  Google Scholar 

  • Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netzker T, Fischer J, Weber J, Mattern DJ, König CC, Valiante V, Schroeckh V, Brakhage AA (2015) Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Front Microbiol 6:299

    PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75:311–335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ni M, Yu JH (2007) A novel regulator couples sporogenesis and trehalose biogenesis in Aspergillus nidulans. PLoS One 2:e970

    PubMed  PubMed Central  Google Scholar 

  • Nie X, Li B, Wang S (2018) Epigenetic and posttranslational modifications in regulating the biology of Aspergillus species. In: Gadd GM, Sariaslani S (eds) Advances in applied microbiology. Academic Press, London, pp 191–226

    Google Scholar 

  • Nitsche BM, Burggraaf-van Welzen A-M, Lamers G, Meyer V, Ram AFJ (2013) Autophagy promotes survival in aging submerged cultures of the filamentous fungus Aspergillus niger. Appl Microbiol Biotechnol 97:8205–8218

    CAS  PubMed  Google Scholar 

  • Nocedal I, Mancera E, Johnson AD (2017) Gene regulatory network plasticity predates a switch in function of a conserved transcription regulator. Elife 6:e23250

    PubMed  PubMed Central  Google Scholar 

  • Nolting N, Bernhards Y, Pöggeler S (2009) SmATG7 is required for viability in the homothallic ascomycete Sordaria macrospora. Fungal Genet Biol 46:531–542

    CAS  PubMed  Google Scholar 

  • Noventa-Jordão MA, Mendes do Nascimento A, Goldman MHS, Terenzi HF, Goldman GH (2000) Molecular characterization of ubiquitin genes from Aspergillus nidulans: mRNA expression on different stress and growth conditions. Biochim Biophys Acta Mol Cell Res 1490:237–244

    Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    CAS  PubMed  Google Scholar 

  • Nsa IY, Karunarathna N, Liu X, Huang H, Boetteger B, Bell-Pedersen D (2015) A novel cryptochrome-dependent oscillator in Neurospora crassa. Genetics 199:233–245

    CAS  PubMed  Google Scholar 

  • Nützmann H-W, Reyes-Dominguez Y, Scherlach K, Schroeckh V, Horn F, Gacek A, Schümann J, Hertweck C, Strauss J, Brakhage AA (2011) Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc Natl Acad Sci USA 108:14282–14287

    PubMed  Google Scholar 

  • Oakley CE, Ahuja M, Sun W, Entwistle R, Akashi T, Yaegashi J, Guo C, Cerqueira GC, Wortman JR, Clay C, Wang C, Chiang Y, Oakley BR (2016) Discovery of McrA, a master regulator of Aspergillus secondary metabolism. Mol Microbiol 103:347–365

    PubMed  PubMed Central  Google Scholar 

  • Oh Y, Franck WL, Han SO, Shows A, Gokce E, Muddiman DC, Dean RA (2012) Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. PLoS One 7:e42868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Okada BK, Seyedsayamdost MR (2017) Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol Rev 41:19–33

    CAS  PubMed  Google Scholar 

  • Palmer JM, Bok JW, Lee S, Dagenais TRT, Andes DR, Kontoyiannis DP, Keller NP (2013a) Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 1:e4

    Google Scholar 

  • Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP (2013b) Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLoS Genet 9:e1003193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park HS, Yu JH (2012) Genetic control of asexual sporulation in filamentous fungi. Curr Opin Microbiol 15:669–677

    CAS  PubMed  Google Scholar 

  • Parzych KR, Ariosa A, Mari M, Klionsky DJ (2018) A newly characterized vacuolar serine carboxypeptidase, Atg42/Ybr139w, is required for normal vacuole function and the terminal steps of autophagy in the yeast Saccharomyces cerevisiae. Mol Biol Cell 29:1089–1099

    PubMed  PubMed Central  Google Scholar 

  • Patananan AN, Palmer JM, Garvey GS, Keller NP, Clarke SG (2013) A novel automethylation reaction in the Aspergillus nidulans LaeA protein generates S-methylmethionine. J Biol Chem 288:14032–14045

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926

    CAS  PubMed  Google Scholar 

  • Pfannenstiel BT, Greco C, Sukowaty AT, Keller NP (2018) The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genet Biol 120:9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pidroni A, Faber B, Brosch G, Bauer I, Graessle S (2018) A class 1 histone deacetylase as major regulator of secondary metabolite production in Aspergillus nidulans. Front Microbiol 9:2212

    PubMed  PubMed Central  Google Scholar 

  • Pöggeler S, Nowrousian M, Teichert I, Beier A, Kück U (2018) Fruiting-body development in ascomycetes. In: Anke T, Schüffler A (eds) The Mycota XV. Physiology and genetics, 2nd edn. Springer International Publishing, Cham, pp 1–56

    Google Scholar 

  • Popova B, Kleinknecht A, Arendarski P, Mischke J, Wang D, Braus GH (2018) Sumoylation protects against β-synuclein toxicity in yeast. Front Mol Neurosci 11:94

    PubMed  PubMed Central  Google Scholar 

  • Purschwitz J, Müller S, Kastner C, Schöser M, Haas H, Espeso EA, Atoui A, Calvo AM, Fischer R (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    CAS  PubMed  Google Scholar 

  • Ramya V, Rajasekharan R (2016) ATG15 encodes a phospholipase and is transcriptionally regulated by YAP1 in Saccharomyces cerevisiae. FEBS Lett 590:3155–3167

    PubMed  Google Scholar 

  • Rauscher S, Pacher S, Hedtke M, Kniemeyer O, Fischer R (2016) A phosphorylation code of the Aspergillus nidulans global regulator VelvetA (VeA) determines specific functions. Mol Microbiol 99:909–924

    CAS  PubMed  Google Scholar 

  • Reggiori F, Komatsu M, Finley K, Simonsen A (2012) Autophagy: more than a nonselective pathway. Int J Cell Biol 2012:1–18

    Google Scholar 

  • Rehman SAA, Kristariyanto YA, Choi S, Labib K, Hofmann K, Kulathu Y, Arif S, Rehman A, Kristariyanto YA, Choi S, Nkosi PJ, Weidlich S (2016) MINDY-1 is a member of an evolutionarily conserved and structurally distinct new family of deubiquitinating enzymes. Mol Cell 63:146–155

    PubMed  PubMed Central  Google Scholar 

  • Ren H, Wang B, Zhao H (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Dominguez Y, Bok JW, Berger H, Shwab EK, Basheer A, Gallmetzer A, Scazzocchio C, Keller N, Strauss J (2010) Heterochromatic marks are associated with the repression of secondary metabolism clusters in Aspergillus nidulans. Mol Microbiol 76:1376–1386

    Google Scholar 

  • Richie DL, Askew DS (2008) Autophagy: a role in metal ion homeostasis? Autophagy 4:115–117

    CAS  PubMed  Google Scholar 

  • Richie DL, Fuller KK, Fortwendel J, Miley MD, McCarthy JW, Feldmesser M, Rhodes JC, Askew DS (2007) Unexpected link between metal ion deficiency and autophagy in Aspergillus fumigatus. Eukaryot Cell 6:2437–2447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82:e00068–e00017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Romero J, Hedtke M, Kastner C, Müller S, Fischer R (2010) Fungi, hidden in soil or up in the air: light makes a difference. Annu Rev Microbiol 64:585–610

    CAS  PubMed  Google Scholar 

  • Rodríguez-Urra AB, Jiménez C, Nieto MI, Rodríguez J, Hayashi H, Ugalde U (2012) Signaling the induction of sporulation involves the interaction of two secondary metabolites in Aspergillus nidulans. ACS Chem Biol 7:599–606

    PubMed  Google Scholar 

  • Rokas A, Wisecaver JH, Lind AL (2018) The birth, evolution and death of metabolic gene clusters in fungi. Nat Rev Microbiol 16:731–744

    CAS  PubMed  Google Scholar 

  • Roze LV, Arthur AE, Hong S-Y, Chanda A, Linz JE (2007) The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol 66:713–726

    CAS  PubMed  Google Scholar 

  • Roze LV, Chanda A, Linz JE (2011a) Compartmentalization and molecular traffic in secondary metabolism: a new understanding of established cellular processes. Fungal Genet Biol 48:35–48

    CAS  PubMed  Google Scholar 

  • Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE, Roze LV, Linz JE, Koptina AV, Kanarsky AV, Laivenieks M, Beaudry RM, Jones DA (2011b) Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92:359–370

    CAS  PubMed  Google Scholar 

  • Ruger-Herreros C, Rodríguez-Romero J, Fernández-Barranco R, Olmedo M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of conidiation by light in Aspergillus nidulans. Genetics 188:809–822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93:2011–2022

    CAS  PubMed  Google Scholar 

  • Sarikaya-Bayram Ö, Bayram Ö, Feussner K, Kim JH, Kim HS, Kaever A, Feussner I, Chae KS, Han DM, Han KH, Braus GH (2014) Membrane-bound methyltransferase complex VapA-VipC-VapB guides epigenetic control of fungal development. Dev Cell 29:406–420

    CAS  PubMed  Google Scholar 

  • Sarikaya-Bayram Ö, Palmer JM, Keller N, Braus GH, Bayram Ö (2015) One Juliet and four Romeos: VeA and its methyltransferases. Front Microbiol 6:1

    PubMed  PubMed Central  Google Scholar 

  • Satterlee T, Cary JW, Calvo AM (2016) RmtA, a putative arginine methyltransferase, regulates secondary metabolism and development in Aspergillus flavus. PLoS One 11:e0155575

    Google Scholar 

  • Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids-biology and molecular biology. In: Cordell GA (ed) The alkaloids.chemistry and biology, vol 63, 1st edn. Academic Press, Cambridge, pp 45–86

    Google Scholar 

  • Scharf DH, Brakhage AA, Mukherjee PK (2016) Gliotoxin—bane or boon? Environ Microbiol 18:1096–1109

    CAS  PubMed  Google Scholar 

  • Schinke J, Gulko MK, Christmann M, Valerius O, Stumpf K, Stirz M, Braus GH (2016) The DenA/DEN1 interacting phosphatase DipA controls septa positioning and phosphorylation-dependent stability of cytoplasmatic DenA/DEN1 during fungal development. PLoS Genet 12:e1005949

    PubMed  PubMed Central  Google Scholar 

  • Schmidt-Dannert C (2014) Biosynthesis of terpenoid natural products in fungi. In: Schrader JBJ (ed) Biotechnology of isoprenoids, Advances in biochemical engineering/biotechnology, vol 148. Springer, Cham, pp 19–61

    Google Scholar 

  • Sela N, Atir-lande A, Kornitzer D (2012) Neddylation and CAND1 independently stimulate SCF ubiquitin ligase activity in Candida albicans. Eukaryot Cell 11:42–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shelest E (2017) Transcription factors in fungi: TFome dynamics, three major families, and dual-specificity TFs. Front Genet 8:53

    PubMed  PubMed Central  Google Scholar 

  • Shilatifard A (2012) The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 81:65–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Hicks JK, Huang T, Keller NP (2003) Pka, Ras and RGS protein interactions regulate activity of AflR, a Zn(II)2Cys6 transcription factor in Aspergillus nidulans. Genetics 1104:1095–1104

    Google Scholar 

  • Shimizu M, Masuo S, Fujita T, Doi Y, Kamimura Y, Takaya N (2012) Hydrolase controls cellular NAD, sirtuin, and secondary metabolites. Mol Cell Biol 32:3743–3755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shlezinger N, Irmer H, Dhingra S, Beattie SR, Cramer RA, Braus GH, Sharon A, Hohl TM (2017) Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death. Science 357:1037–1041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoji J, Kikuma T, Arioka M, Kitamoto K (2010) Macroautophagy-mediated degradation of whole nuclei in the filamentous fungus Aspergillus oryzae. PLoS One 5:e15650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    Google Scholar 

  • Soukup AA, Chiang Y-M, Woo Bok J, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP (2012) Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86:314–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spasser L, Brik A (2012) Chemistry and biology of the ubiquitin signal. Angew Chem 51:6840–6862

    CAS  Google Scholar 

  • Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M (2017) The fungal tree of life: from molecular systematics to genome-scale phylogenies. Microbiol Spectr 5:5

    Google Scholar 

  • Stergiopoulos I, Collemare J, Mehrabi R, de Wit PJGM (2013) Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 37:67–93

    CAS  PubMed  Google Scholar 

  • Stjepanovic G, Baskaran S, Lin MG, Hurley JH (2017) Vps34 kinase domain dynamics regulate the autophagic PI 3-kinase complex. Mol Cell 67:528–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72:2041–2059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss J, Reyes-Dominguez Y (2011) Regulation of secondary metabolism by chromatin structure and epigenetic codes. Fungal Genet Biol 48:62–69

    CAS  PubMed  Google Scholar 

  • Studt L, Janevska S, Arndt B, Boedi S, Sulyok M, Humpf HU, Tudzynski B, Strauss J (2017) Lack of the COMPASS component Ccl1 reduces H3K4 trimethylation levels and affects transcription of secondary metabolite genes in two plant-pathogenic Fusarium species. Front Microbiol 7:2144

    Google Scholar 

  • Sugimoto N, Iwaki T, Chardwiriyapreecha S, Shimazu M, Kawano M, Sekito T, Takegawa K, Kakinuma Y (2011) Atg22p, a vacuolar membrane protein involved in the amino acid compartmentalization of Schizosaccharomyces pombe. Biosci Biotechnol Biochem 75:385–387

    CAS  PubMed  Google Scholar 

  • Sun ZW, Allis CD (2002) Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature 418:104–108

    CAS  PubMed  Google Scholar 

  • Sun H, Wang W, Che Y, Jiang X (2016) Fungal secondary metabolites rasfonin induces autophagy, apoptosis and necroptosis in renal cancer cell line. Mycology 7:81–87

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan S, Amerik AY, Hochstrasser M (1999) The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Mol Biol Cell 10:2583–2594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tan KK (1974) Blue-light inhibition of sporulation in Botrytis cinerea. J Gen Microbiol 82:191–200

    Google Scholar 

  • Thieme KG, Gerke J, Sasse C, Valerius O, Thieme S, Karimi R, Heinrich AK, Finkernagel F, Smith K, Bode HB, Freitag M, Ram AFJ, Braus GH (2018) Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genet 14:e1007511

    PubMed  PubMed Central  Google Scholar 

  • Toledo AV, Franco MEE, Yanil Lopez SM, Troncozo MI, Saparrat MCN, Balatti PA (2017) Melanins in fungi: types, localization and putative biological roles. Physiol Mol Plant Pathol 99:2–6

    CAS  Google Scholar 

  • Tomko RJ, Hochstrasser M (2013) Molecular architecture and assembly of the eukaryotic proteasome. Annu Rev Biochem 82:415–445

    CAS  PubMed  Google Scholar 

  • Tribus M, Bauer I, Galehr J, Rieser G, Trojer P, Brosch G, Loidl P, Haas H, Graessle S (2010) A novel motif in fungal class 1 histone deacetylases is essential for growth and development of Aspergillus. Mol Biol Cell 21:345–353

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    CAS  PubMed  Google Scholar 

  • Tyler JK, Johnson JE (2018) The role of autophagy in the regulation of yeast life span. Ann N Y Acad Sci 1418:31–43

    PubMed  PubMed Central  Google Scholar 

  • van der Lee TAJ, Medema MH (2016) Computational strategies for genome-based natural product discovery and engineering in fungi. Fungal Genet Biol 89:29–36

    PubMed  Google Scholar 

  • VanderMolen KM, Darveaux BA, Chen W-L, Swanson SM, Pearce CJ, Oberlies NH (2014) Epigenetic manipulation of a filamentous fungus by the proteasome-inhibitor bortezomib induces the production of an additional secondary metabolite. RSC Adv 4:18329–18335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt O, Pöggeler S (2013) Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete Sordaria macrospora. Autophagy 9:33–49

    CAS  PubMed  PubMed Central  Google Scholar 

  • von Zeska Kress MR, Harting R, Bayram Ö, Christmann M, Irmer H, Valerius O, Schinke J, Goldman GH, Braus GH (2012) The COP9 signalosome counteracts the accumulation of cullin SCF ubiquitin E3 RING ligases during fungal development. Mol Microbiol 83:1162–1177

    Google Scholar 

  • Wagner EJ, Carpenter PB (2012) Understanding the language of Lys36 methylation at histone H3. Nat Rev Mol Cell Biol 13:115–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waite KA, De-La Mota-Peynado A, Vontz G, Roelofs J (2016) Starvation induces proteasome autophagy with different pathways for core and regulatory particles. J Biol Chem 291:3239–3253

    CAS  PubMed  Google Scholar 

  • Wang J, Hu Q, Chen H, Zhou Z, Li W, Wang Y, Li S, He Q (2010) Role of individual subunits of the Neurospora crassa CSN complex in regulation of deneddylation and stability of cullin proteins. PLoS Genet 6:12–16

    Google Scholar 

  • Wang Y, Kim S-G, Wu J, Yu S, Kang K-Y, Kim S-T (2011) Proteasome inhibitors affect appressorium formation and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Plant Pathol J 27:225–231

    Google Scholar 

  • Wang Z, Wang J, Li N, Li J, Trail F, Dunlap JC, Townsend JP (2018) Light sensing by opsins and fungal ecology: NOP-1 modulates entry into sexual reproduction in response to environmental cues. Mol Ecol 27:216–232

    CAS  PubMed  Google Scholar 

  • Wen X, Klionsky DJ (2016) An overview of macroautophagy in yeast. J Mol Biol 428:1681–1699

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werner A, Herzog B, Voigt O, Valerius O, Braus GH, Pöggeler S (2019) NBR1 is involved in selective pexophagy in filamentous ascomycetes and can be functionally replaced by a tagged version of its human homolog. Autophagy 15:78–97

    CAS  PubMed  Google Scholar 

  • Wiemann P, Brown DW, Kleigrewe K, Bok JW, Keller NP, Humpf HU, Tudzynski B (2010) FfVel1 and Fflae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol 77:972–994

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams RB, Henrikson JC, Hoover AR, Lee AE, Cichewicz RH (2008) Epigenetic remodeling of the fungal secondary metabolome. Org Biomol Chem 6:1895–1897

    CAS  PubMed  Google Scholar 

  • Wolf JC, Mirocha CJ (1977) Control of sexual reproduction in Gibberella zeae (Fusarium roseum “Graminearum”). Appl Environ Microbiol 33:546–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Zhu W, Nhan T, Toth JI, Petroski MD, Wolf DA (2013) CAND1 controls in vivo dynamics of the cullin 1-RING ubiquitin ligase repertoire. Nat Commun 4:1642

    PubMed  PubMed Central  Google Scholar 

  • Wu C, Yang F, Smith KM, Peterson M, Dekhang R, Zhang Y, Zucker J, Bredeweg EL, Mallappa C, Zhou X, Lyubetskaya A, Townsend JP, Galagan JE, Freitag M, Dunlap JC, Bell-Pedersen D, Sachs MS (2014) Genome-wide characterization of light-regulated genes in Neurospora crassa. G3 4:1731–1745

    PubMed  Google Scholar 

  • Xia X, Kim S, Liu C, Shim S, Xia X, Kim S, Liu C, Shim SH (2016) Secondary metabolites produced by an endophytic fungus Pestalotiopsis sydowiana and their 20S proteasome inhibitory activities. Molecules 21:944

    PubMed Central  Google Scholar 

  • Xiao Z, Li L, Li Y, Zhou W, Cheng J, Liu F, Zheng P, Zhang Y, Che Y (2014) Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice. Cell Death Dis 5:e1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu W, Gavia DJ, Tang Y (2014) Biosynthesis of fungal indole alkaloids. Nat Prod Rep 31:1474–1487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Z, Fischer R (2019) Light sensing and responses in fungi. Nat Rev Microbiol 17:25–36

    CAS  PubMed  Google Scholar 

  • Zheng S, Wyrick JJ, Reese JC (2010) Novel trans-tail regulation of H2B ubiquitylation and H3K4 methylation by the N terminus of histone H2A. Mol Cell Biol 30:3635–3645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Ma K, Lyu H, Huang Y, Liu H, Liu L, Che Y, Liu X, Zou H, Yin W-B (2017) Genetic manipulation of the COP9 signalosome subunit PfCsnE leads to the discovery of pestaloficins in Pestalotiopsis fici. Org Lett 19:4700–4703

    CAS  PubMed  Google Scholar 

  • Zuin A, Isasa M, Crosas B (2014) Ubiquitin signaling: extreme conservation as a source of diversity. Cells 3:690–701

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Fruzsina Bakti and Christoph Sasse for critical reading of the manuscript. Funding of this research was provided by the Deutsche Forschungsgemeinschaft (DFG) and the SFB860.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard H. Braus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerke, J., Köhler, A.M., Meister, C., Thieme, K.G., Amoedo, H., Braus, G.H. (2020). Coordination of Fungal Secondary Metabolism and Development. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_8

Download citation

Publish with us

Policies and ethics