Skip to main content

Small RNAs in Fungi

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 1073 Accesses

Abstract

RNA interference is a conserved eukaryotic mechanism that uses small RNAs to silence gene expression at the transcriptional or posttranscriptional level. In fungi, this mechanism has evolved leading to a wide range of pathways and different types of small RNAs that carry out specific functions. Some of these RNA interference pathways are devoted to protecting the genome integrity acting at both vegetative and sexual cycle. Many others have assumed regulatory roles in fungal development and physiology, unveiling a heterogeneous world of regulatory mechanisms that use different classes of small RNAs. Interestingly, these regulatory mechanisms can provide an adaptive advantage to fungi in threatening situations by the generation of phenotypic plasticity or by the control of the gene expression in interacting organisms. This chapter summarizes the recent findings about the function of the different small RNA classes in fungal biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander WG, Raju NB, Xiao H, Hammond TM, Perdue TD, Metzenberg RL, Pukkila PJ, Shiu PKT (2008) DCL-1 colocalizes with other components of the MSUD machinery and is required for silencing. Fungal Genet Biol 45:719–727

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  • Bonath F, Domingo-Prim J, Tarbier M, Friedländer MR, Visa N (2018) Next-generation sequencing reveals two populations of damage-induced small RNAs at endogenous DNA double-strand breaks. Nucleic Acids Res 46:11869–11882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borgognone A, Castanera R, Morselli M, López-Varas L, Rubbi L, Pisabarro AG, Pellegrini M, Ramírez L (2018) Transposon-associated epigenetic silencing during Pleurotus ostreatus life cycle. DNA Res 25:451–464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butler DK (1992) Ribosomal DNA is a site of chromosome breakage in aneuploid strains of Neurospora. Genetics 131:581–592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bzymek M, Lovett ST (2001) Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci 98:8319–8325

    CAS  PubMed  Google Scholar 

  • Cai Q, He B, Kogel K-H, Jin H (2018a) Cross-kingdom RNA trafficking and environmental RNAi — nature’s blueprint for modern crop protection strategies. Curr Opin Microbiol 46:58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Qiao L, Wang M, He B, Lin FM, Palmquist J, Da Huang S, Jin H (2018b) Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes. Science 360:1126–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calo S, Shertz-Wall C, Lee SC, Bastidas RJ, Nicolás FE, Granek JA, Mieczkowski P, Torres-Martínez S, Ruiz-Vázquez RM, Cardenas ME et al (2014) Antifungal drug resistance evoked via RNAi-dependent epimutations. Nature 513:555–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calo S, Nicolás FE, Lee SC, Vila A, Cervantes M, Torres-Martinez S, Ruiz-Vazquez RM, Cardenas ME, Heitman J (2017) A non-canonical RNA degradation pathway suppresses RNAi-dependent epimutations in the human fungal pathogen Mucor circinelloides. PLoS Genet 13:e1006686

    PubMed  PubMed Central  Google Scholar 

  • Campbell JL, Turner BC (1987) Recombination block in the spore killer region of Neurospora. Genome 29:129–135

    CAS  PubMed  Google Scholar 

  • Campo S, Gilbert KB, Carrington JC (2016) Small RNA-based antiviral defense in the phytopathogenic fungus Colletotrichum higginsianum. PLoS Pathog 12:e1005640

    PubMed  PubMed Central  Google Scholar 

  • Carreras-Villaseñor N, Esquivel-Naranjo EU, Villalobos-Escobedo JM, Abreu-Goodger C, Herrera-Estrella A (2013) The RNAi machinery regulates growth and development in the filamentous fungus Trichoderma atroviride. Mol Microbiol 89:96–112

    PubMed  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catalanotto C, Azzalin G, Macino G, Cogoni C (2002) Involvement of small RNAs and role of the qde genes in the gene silencing pathway in Neurospora. Genes Dev 16:790–795

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes M, Vila A, Nicolás FE, Moxon S, de Haro JP, Dalmay T, Torres-Martínez S, Ruiz-Vázquez RM (2013) A single argonaute gene participates in exogenous and endogenous RNAi and controls cellular functions in the basal fungus Mucor circinelloides. PLoS One 8:e69283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S-S, Zhang Z, Liu Y (2012) RNA interference pathways in fungi: mechanisms and functions. Annu Rev Microbiol 66:305–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang Z, Billmyre RB, Lee SC, Heitman J (2019) Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet 15:e1007957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Jiang N, Jiang Q, Sun X, Wang Y, Zhang H, Hu Z (2014) Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 9:e104956

    PubMed  PubMed Central  Google Scholar 

  • Choi J, Kim KT, Jeon J, Wu J, Song H, Asiegbu FO, Lee YH (2014) FunRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genomics 15:S14

    PubMed  PubMed Central  Google Scholar 

  • Cogoni C, Irelan JT, Schumacher M, Schmidhauser TJ, Selkerl EU, Macino G, Umana B, Cellulare B (1996) Transgene silencing of the al-1 gene in vegetative cells of Neurospora is mediated by a cytoplasmic effector and does not depend on DNA-DNA interactions or DNA methylation. EMBO J 1:3153–3163

    Google Scholar 

  • Dahlmann TA, Kück U (2015) Dicer-dependent biogenesis of small RNAs and evidence for microRNA-like RNAs in the penicillin producing fungus Penicillium chrysogenum. PLoS One 10:e0125989

    PubMed  PubMed Central  Google Scholar 

  • Dang Y, Li L, Guo W, Xue Z, Liu Y (2013) Convergent transcription induces dynamic DNA methylation at disiRNA loci. PLoS Genet 9:e1003761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang Y, Cheng J, Sun X, Zhou Z, Liu Y (2016) Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing. Genes Dev 30:2417–2432

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Haro JP, Calo S, Cervantes M, Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM (2009) A single dicer gene is required for efficient gene silencing associated with two classes of small antisense RNAs in Mucor circinelloides. Eukaryot Cell 8:1486–1497

    PubMed  PubMed Central  Google Scholar 

  • Donaldson ME, Saville BJ (2012) Natural antisense transcripts in fungi. Mol Microbiol 85:405–417

    CAS  PubMed  Google Scholar 

  • Donaldson ME, Saville BJ (2013) Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis. Mol Microbiol 89:29–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP (2009) RNAi in budding yeast. Science 326:544–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drinnenberg IA, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumesic PA, Natarajan P, Chen C, Drinnenberg IA, Schiller BJ, Thompson J, Moresco JJ, Yates JR, Bartel DP, Madhani HD (2013) Stalled spliceosomes are a signal for RNAi-mediated genome defense. Cell 152:957–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellendorff U, Fradin EF, De Jonge R, Thomma BPHJ (2009) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    CAS  PubMed  Google Scholar 

  • Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Google Scholar 

  • Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10:637–643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feretzaki M, Billmyre RB, Clancey SA, Wang X, Heitman J (2016) Gene network polymorphism illuminates loss and retention of novel RNAi silencing components in the Cryptococcus pathogenic species complex. PLoS Genet 12:1005868

    Google Scholar 

  • Francia S, Michelini F, Saxena A, Tang D, De Hoon M, Mione M, Carninci P (2013) Site-specific DICER and DROSHA RNA products control the DNA damage response. Nature 488:231–235

    Google Scholar 

  • Friedman S, Freitag M (2017) Centrochromatin of Fungi. In: Black BE (ed) Centromeres and kinetochores. Springer International Publishing AG, Cham, pp 85–109

    Google Scholar 

  • Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao D, Jiang N, Wing RA, Jiang J, Jackson SA (2015) Transposons play an important role in the evolution and diversification of centromeres among closely related species. Front Plant Sci 6:216

    PubMed  PubMed Central  Google Scholar 

  • Gazzani S, Lawrenson T, Woodward C, Headon D, Sablowski R (2008) A link between mRNA turnover and RNA interference in Arabidopsis. Science 1046:1046–1049

    Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halic M, Moazed D (2010) Dicer-independent primal RNAs trigger RNAi and heterochromatin formation. Cell 140:504–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond TM (2017) Sixteen years of meiotic silencing by unpaired DNA. Adv Genet 97:1–42

    CAS  PubMed  Google Scholar 

  • Hammond TM, Andrewski MD, Roossinck MJ, Keller NP (2008) Aspergillus mycoviruses are targets and suppressors of RNA silencing. Eukaryot Cell 7:350–357

    CAS  PubMed  Google Scholar 

  • Hammond TM, Xiao H, Boone EC, Perdue TD, Pukkila PJ, Shiu PKT (2011) SAD-3, a putative helicase required for meiotic silencing by unpaired DNA, interacts with other components of the silencing machinery. G3 (Bethesda) 1:369–376

    CAS  Google Scholar 

  • Hammond TM, Xiao H, Boone EC, Decker LM, Lee SA, Perdue TD, Pukkila PJ, Shiu PKT (2013a) Novel proteins required for meiotic silencing by unpaired DNA and siRNA generation in Neurospora crassa. Genetics 194:91–100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond TM, Spollen WG, Decker LM, Blake SM, Springer GK, Shiu PKT (2013b) Identification of small RNAs associated with meiotic silencing by unpaired DNA. Genetics 194:279–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey JJW, Lewsey MG, Patel K, Westwood J, Heimstädt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PLoS One 6:e14639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey AM, Rehard DG, Groskreutz KM, Kuntz DR, Sharp K, Shiu PK, Hammond TM (2014) A critical component of meiotic drive in Neurospora is located near a chromosome rearrangement. Genetics 197:1165–1174

    PubMed  PubMed Central  Google Scholar 

  • Janbon G, Maeng S, Yang DH, Ko YJ, Jung KW, Moyrand F, Floyd A, Heitman J, Bahn YS (2010) Characterizing the role of RNA silencing components in Cryptococcus neoformans. Fungal Genet Biol 47:1070–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jeang KT (2012) RNAi in the regulation of mammalian viral infections. BMC Biol 10:58

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang X, Qiao F, Long Y, Cong H, Sun H (2017) MicroRNA-like RNAs in plant pathogenic fungus Fusarium oxysporum f. sp. niveum are involved in toxin gene expression fine tuning. 3 Biotech 7:354

    PubMed  PubMed Central  Google Scholar 

  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2004) One of the two dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J Biol Chem 279:44467–44474

    CAS  PubMed  Google Scholar 

  • Kang K, Zhong J, Jiang L, Liu G, Gou CY, Wu Q, Wang Y, Luo J, Gou D (2013) Identification of microRNA-like RNAs in the filamentous fungus Trichoderma reesei by Solexa sequencing. PLoS One 8:e76288

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Kumar N, Weber L, Keller H, Imani J, Kogel K-H (2013) Host-induced gene silencing of cytochrome P450 lanosterol C14 -demethylase-encoding genes confers strong resistance to Fusarium species. Proc Natl Acad Sci 110:19324–19329

    CAS  PubMed  Google Scholar 

  • Kronholm I, Johannesson H, Ketola T (2016) Epigenetic control of phenotypic plasticity in the filamentous fungus Neurospora crassa. G3 (Bethesda) 6:4009–4022

    CAS  Google Scholar 

  • Kuan T, Zhai Y, Ma W (2016) Small RNAs regulate plant responses to filamentous pathogens. Semin Cell Dev Biol 56:190–200

    CAS  PubMed  Google Scholar 

  • Lau SKP, Chow WN, Wong AYP, Yeung JMY, Bao J, Zhang N, Lok S, Woo PCY, Yuen KY (2013) Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. PLoS Negl Trop Dis 7:e2398

    PubMed  PubMed Central  Google Scholar 

  • Lau AYT, Cheng X, Cheng CK, Nong W, Cheung MK, Chan RHF, Hui JHL, Kwan HS (2018) Discovery of microRNA-like RNAs during early fruiting body development in the model mushroom Coprinopsis cinerea. PLoS One 13:e0198234

    PubMed  PubMed Central  Google Scholar 

  • Laurie JD, Linning R, Bakkeren G (2008) Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis. Curr Genet 53:49–58

    CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    CAS  PubMed  Google Scholar 

  • Lee DW, Pratt RJ, McLaughlin M, Aramayo R (2003) An Argonaute-like protein is required for meiotic silencing. Genetics 164:821–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Chang S-S, Choudhary S, Aalto AP, Maiti M, Bamford DH, Liu Y (2009) qiRNA, a new type of small interfering RNA induced by DNA damage. Nature 459:274–277

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HC, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC, Liu Y (2010) Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin YL, Ma LT, Lee YR, Lin SS, Wang SY, Chang TT, Shaw JF, Li WH, Chu FH (2015) MicroRNA-like small RNAs prediction in the development of Antrodia cinnamomea. PLoS One 10:e0123245

    PubMed  PubMed Central  Google Scholar 

  • Liu Y, Lee HC, Aalto AP, Yang Q, Chang SS, Huang G, Fisher D, Cha J, Poranen MM, Bamford DH (2010) The DNA/RNA-dependent RNA polymerase QDE-1 generates aberrant RNA and dsRNA for RNAi in a process requiring replication protein a and a DNA helicase. PLoS Biol 8:e1000496

    PubMed  PubMed Central  Google Scholar 

  • López-Camarillo C, Marchat LA (2013) MicroRNAs in cancer. Annu Rev Pathol 9:287–314

    Google Scholar 

  • Lu WT, Hawley BR, Skalka GL, Baldock RA, Smith EM, Bader AS, Malewicz M, Watts FZ, Wilczynska A, Bushell M (2018) Drosha drives the formation of DNA:RNA hybrids around DNA break sites to facilitate DNA repair. Nat Commun 9:532

    PubMed  PubMed Central  Google Scholar 

  • Martienssen R, Moazed D (2015) RNAi and heterochromatin. Cold Spring Harb Perspect Biol 7:a019323

    PubMed  PubMed Central  Google Scholar 

  • Meussen BJ, De Graaff LH, Sanders JPM, Weusthuis RA (2012) Metabolic engineering of Rhizopus oryzae for the production of platform chemicals. Appl Microbiol Biotechnol 94:875–886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michalik KM, Böttcher R, Förstemann K (2012) A small RNA response at DNA ends in Drosophila. Nucleic Acids Res 40:9596–9603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michielse CB, Salim K, Ragas P, Ram AFJ, Kudla B, Jarry B, Punt PJ, Van Den Hondel CAMJJ (2004) Development of a system for integrative and stable transformation of the zygomycete Rhizopus oryzae by agrobacterium-mediated DNA transfer. Mol Gen Genomics 271:499–510

    CAS  Google Scholar 

  • Mochama P, Jadhav P, Neupane A, Marzano SYL (2018) Mycoviruses as triggers and targets of RNA silencing in white mold fungus Sclerotinia sclerotiorum. Viruses 10:214

    PubMed Central  Google Scholar 

  • Muszewska A, Steczkiewicz K, Stepniewska-Dziubinska M, Ginalski K (2017) Cut-and-paste transposons in fungi with diverse lifestyles. Genome Biol Evol 9:3463–3477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayashiki H, Kadotani N, Mayama S (2006) Evolution and diversification of RNA silencing proteins in fungi. J Mol Evol 63:127–135

    CAS  PubMed  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nevers A, Doyen A, Malabat C, Néron B, Kergrohen T, Jacquier A, Badis G (2018) Antisense transcriptional interference mediates condition-specific gene repression in budding yeast. Nucleic Acids Res 46:6009–6025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM (2003) Two classes of small antisense RNAs in fungal RNA silencing triggered by non-integrative transgenes. EMBO J 22:3983–3991

    PubMed  PubMed Central  Google Scholar 

  • Nicolás FE, de Haro JP, Torres-Martínez S, Ruiz-Vázquez RM (2007) Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genet Biol 44:504–516

    PubMed  Google Scholar 

  • Nicolas FE, Moxon S, de Haro JP, Calo S, Grigoriev IV, Torres-Martínez S, Moulton V, Ruiz-Vázquez RM, Dalmay T (2010) Endogenous short RNAs generated by dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides. Nucleic Acids Res 38:5535–5541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolás FE, Torres-Martínez S, Ruiz-Vázquez RM (2013) Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 9:e1003089

    PubMed  PubMed Central  Google Scholar 

  • Nicolás FE, Vila A, Moxon S, Cascales MD, Torres-Martínez S, Ruiz-Vázquez RM, Garre V (2015) The RNAi machinery controls distinct responses to environmental signals in the basal fungus Mucor circinelloides. BMC Genomics 16:237

    PubMed  PubMed Central  Google Scholar 

  • Noble LM, Holland LM, McLauchlan AJ, Andrianopoulos A (2016) A plastic vegetative growth threshold governs reproductive capacity in Aspergillus nidulans. Genetics 204:1161–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan T, Braccini L, Azzalin G, De Toni A, Macino G, Cogoni C (2005) The post-transcriptional gene silencing machinery functions independently of DNA methylation to repress a LINE1-like retrotransposon in Neurospora crassa. Nucleic Acids Res 33:1564–1573

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nowara D, Gay A, Lacomme C, Shaw J, Ridout C, Douchkov D, Hensel G, Kumlehn J, Schweizer P (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13:519–529

    CAS  PubMed  Google Scholar 

  • Panwar V, McCallum B, Bakkeren G (2013) Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the barley stripe mosaic virus. Plant Mol Biol 81:595–608

    CAS  PubMed  Google Scholar 

  • Papp T, Csernetics Á, Nagy G, Bencsik O, Iturriaga EA, Eslava AP, Vágvölgyi C (2013) Canthaxanthin production with modified Mucor circinelloides strains. Appl Microbiol Biotechnol 97:4937–4950

    CAS  PubMed  Google Scholar 

  • Peres da Silva R, Puccia R, Rodrigues ML, Oliveira DL, Joffe LS, César GV, Nimrichter L, Goldenberg S, Alves LR (2015) Extracellular vesicle-mediated export of fungal RNA. Sci Rep 5:7763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pickford AS, Cogoni C (2003) RNA-mediated gene silencing. Cell Mol Life Sci 60:871–882

    CAS  PubMed  Google Scholar 

  • Pidoux AL, Allshire RC (2005) The role of heterochromatin in centromere function. Philos Trans R Soc Lond Ser B Biol Sci 360:569–579

    CAS  Google Scholar 

  • Raju NB, Metzenberg RL, Shiu PK (2007) Neurospora spore killers Sk-2 and Sk-3 suppress meiotic silencing by unpaired DNA. Genetics 176:43–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan M, Naga Sowjanya T, Raj KB, Kasbekar DP (2011) Meiotic silencing by unpaired DNA is expressed more strongly in the early than the late perithecia of crosses involving most wild-isolated Neurospora crassa strains and in self-crosses of N. tetrasperma. Fungal Genet Biol 48:1146–1152

    CAS  PubMed  Google Scholar 

  • Rayner S, Bruhn S, Vallhov H, Andersson A, Billmyre RB, Scheynius A (2017) Identification of small RNAs in extracellular vesicles from the commensal yeast Malassezia sympodialis. Sci Rep 7:39742

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romano N, Macino G (1992) Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol Microbiol 6:3343–3353

    CAS  PubMed  Google Scholar 

  • Roy B, Sanyal K (2011) Diversity in requirement of genetic and epigenetic factors for centromere function in fungi. Eukaryot Cell 10:1384–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Samarajeewa DA, Sauls PA, Sharp KJ, Smith ZJ, Xiao H, Groskreutz KM, Malone TL, Boone EC, Edwards KA, Shiu PKT et al (2014) Efficient detection of unpaired DNA requires a member of the rad54-like family of homologous recombination proteins. Genetics 198:895–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segers GC, Zhang X, Deng F, Sun Q, Nuss DL (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci 104:12902–12906

    CAS  PubMed  Google Scholar 

  • Shao J, Chen H, Yang D, Jiang M, Zhang H, Wu B, Li J, Yuan L, Liu C (2017) Genome-wide identification and characterization of natural antisense transcripts by strand-specific RNA sequencing in Ganoderma lucidum. Sci Rep 7:5711

    PubMed  PubMed Central  Google Scholar 

  • Shiu PKT, Metzenberg RL (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shiu PKT, Raju NB, Zickler D, Metzenberg RL (2001) Meiotic silencing by unpaired DNA. Cell 107:905–916

    CAS  PubMed  Google Scholar 

  • Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia 101:823–832

    PubMed  Google Scholar 

  • Smits P, Smeitink JAM, van den Heuvel LP, Huynen MA, Ettema TJG (2007) Reconstructing the evolution of the mitochondrial ribosomal proteome. Nucleic Acids Res 35:4686–4703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son H, Min K, Lee J, Raju NB, Lee YW (2011) Meiotic silencing in the homothallic fungus Gibberella zeae. Fungal Biol 115:1290–1302

    CAS  PubMed  Google Scholar 

  • Son H, Park AR, Lim JY, Shin C, Lee YW (2017) Genome-wide exonic small interference RNA-mediated gene silencing regulates sexual reproduction in the homothallic fungus Fusarium graminearum. PLoS Genet 13:e1006595

    PubMed  PubMed Central  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    CAS  PubMed  Google Scholar 

  • Sun Q, Choi GH, Nuss DL (2009) A single Argonaute gene is required for induction of RNA silencing antiviral defense and promotes viral RNA recombination. Proc Natl Acad Sci 106:17927–17932

    CAS  PubMed  Google Scholar 

  • Tinoco MLP, Dias BBA, Dall’Astta RC, Pamphile JA, Aragão FJL (2010) In vivo trans-specific gene silencing in fungal cells by in planta expression of a double-stranded RNA. BMC Biol 8:27

    PubMed  PubMed Central  Google Scholar 

  • Torres-Martínez S, Ruiz-Vázquez RM (2017) The RNAi universe in fungi: a varied landscape of small rnas and biological functions. Annu Rev Microbiol 71:371–391

    PubMed  Google Scholar 

  • Trieu TA, Calo S, Nicolás FE, Vila A, Moxon S, Dalmay T, Torres-Martínez S, Garre V, Ruiz-Vázquez RM (2015) A non-canonical rna silencing pathway promotes mRNA degradation in basal fungi. PLoS Genet 11:1005168

    Google Scholar 

  • Trieu TA, Navarro-Mendoza MI, Pérez-Arques C, Sanchis M, Capilla J, Navarro-Rodriguez P, Lopez-Fernandez L, Torres-Martínez S, Garre V, Ruiz-Vázquez RM et al (2017) RNAi-based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog 13:e1006150

    PubMed  PubMed Central  Google Scholar 

  • Tucker JF, Ohle C, Schermann G, Bendrin K, Zhang W, Fischer T, Zhang K (2016) A novel epigenetic silencing pathway involving the highly conserved 5′-3′ exoribonuclease Dhp1/Rat1/Xrn2 in Schizosaccharomyces pombe. PLoS Genet 12:e1005873

    PubMed  PubMed Central  Google Scholar 

  • Turner BC, Perkins DD (1979) Spore killer, a chromosomal factor in neurospora that kills meiotic products not containing it. Genetics 93:587–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ugolini I, Halic M (2018) Fidelity in RNA-based recognition of transposable elements. Philos Trans R Soc B Biol Sci 373:20180168

    Google Scholar 

  • Vader G, Blitzblau HG, Tame MA, Falk JE, Curtin L, Hochwagen A (2011) Protection of repetitive DNA borders from self-induced meiotic instability. Nature 477:115–121

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villalobos-Escobedo JM, Herrera-Estrella A, Carreras-Villaseñor N (2016) The interaction of fungi with the environment orchestrated by RNAi. Mycologia 108:556–571

    CAS  PubMed  Google Scholar 

  • Volpe T, Martienssen RA (2011) RNA interference and heterochromatin assembly. Cold Spring Harb Perspect Biol 3:a003731

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Hsueh Y-P, Li W, Floyd A, Skalsky R, Heitman J (2010) Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi. Genes Dev 24:2566–2582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang P, Sun S, Darwiche S, Idnurm A, Heitman J (2012) Transgene induced co-suppression during vegetative growth in Cryptococcus neoformans. PLoS Genet 8:e1002885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Darwiche S, Heitman J (2013) Sex-induced silencing operates during opposite-sex and unisexual reproduction in Cryptococcus neoformans. Genetics 193:1163–1174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Smith KM, Taylor JW, Freitag M, Stajich JE (2015) Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 (Bethesda) 5:1949–1960

    CAS  Google Scholar 

  • Wang M, Weiberg A, Lin FM, Thomma BPHJ, Da Huang H, Jin H (2016) Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nat Plants 2:1–10

    CAS  Google Scholar 

  • Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Danielsen JMR, Yang YG, Qi Y (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112

    CAS  PubMed  Google Scholar 

  • Weiberg A, Jin H (2015) Small RNAs-the secret agents in the plant-pathogen interactions. Curr Opin Plant Biol 26:87–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Wang M, Lin FM, Zhao H, Zhang Z, Kaloshian I, Da Huang H, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiberg A, Bellinger M, Jin H (2015) Conversations between kingdoms: small RNAs. Curr Opin Biotechnol 32:207–215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkins C, Dishongh R, Moore SC, Whitt MA, Chow M, Machaca K (2005) RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436:1044–1047

    CAS  PubMed  Google Scholar 

  • Wong LH, Choo KHA (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    CAS  PubMed  Google Scholar 

  • Xiao H, Alexander WG, Hammond TM, Boone EC, Perdue TD, Pukkila PJ, Shiu PKT (2010) QIP, a protein that converts duplex siRNA into single strands, is required for meiotic silencing by unpaired DNA. Genetics 186:119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Sun S, Billmyre RB, Thimmappa BC, Shea T, Lintner R, Bakkeren G, Cuomo CA, Heitman J, Sanyal K (2018) RNAi is a critical determinant of centromere evolution in closely related fungi. Proc Natl Acad Sci 115:201713725

    Google Scholar 

  • Yang Q, Li L, Xue Z, Ye Q, Zhang L, Li S, Liu Y (2013) Transcription of the major Neurospora crassa microRNA-like small RNAs relies on RNA polymerase III. PLoS Genet 9:e1003227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Ye QA, Liu Y (2015) Mechanism of siRNA production from repetitive DNA. Genes Dev 29:526–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Lee K-M, Cho WK, Park JY, Kim K-H (2018) Differential contribution of RNAi components in response to distinct Fusarium graminearum virus infections. J Virol 92:e01756–e01717

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zambon RA, Vakharia VN, Wu LP (2006) RNAi is an antiviral immune response against a dsRNA virus in Drosophila melanogaster. Cell Microbiol 8:880–889

    CAS  PubMed  Google Scholar 

  • Zhang X, Nuss DL (2008) A host dicer is required for defective viral RNA production and recombinant virus vector RNA instability for a positive sense RNA virus. Proc Natl Acad Sci 105:16749–16754

    CAS  PubMed  Google Scholar 

  • Zhang X, Segers GC, Sun Q, Deng F, Nuss DL (2008) Characterization of hypovirus-derived small RNAs generated in the chestnut blight fungus by an inducible DCL-2-dependent pathway. J Virol 82:2613–2619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Chang SS, Zhang Z, Xue Z, Zhang H, Li S, Liu Y (2013) Homologous recombination as a mechanism to recognize repetitive DNA sequences in an RNAi pathway. Genes Dev 27:145–150

    PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zhao YL, Zhao JH, Wang S, Jin Y, Chen ZQ, Fang YY, Hua CL, Ding SW, Guo HS (2016) Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat Plants 2:16153

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victoriano Garre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nicolás, F.E., Murcia, L., Navarro, E., Cánovas-Márquez, J.T., Garre, V. (2020). Small RNAs in Fungi. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_5

Download citation

Publish with us

Policies and ethics