Skip to main content

Exploiting Fungal Photobiology as a Source of Novel Bio-blocks for Optogenetic Systems

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 1102 Accesses

Abstract

In the past years, optogenetics has been recognized as a powerful and versatile technology to control diverse processes, such as gene expression, in multiple biological systems. This implies utilizing light of defined wavelength to excite a photoreceptor module assembled as part of a circuit or switch, triggering a certain cellular response. Because of the characteristics of light, it is possible to achieve tunable responses with great spatiotemporal resolution. In most cases, the different optogenetic devices are based on the utilization of a photoreceptor assembled as a bio-block forming part of a chimeric protein, circuit, or signaling pathway. Several examples involve the utilization of photoreceptors coming from plants or bacteria, whereas in seldom cases they derive from fungi. Among the latter, the light-oxygen-voltage (LOV) domains, such as found in the proteins VVD and WC-1 from the fungus Neurospora crassa, have been successfully implemented as part of optogenetic systems in diverse biological platforms like mice and recently yeast. This chapter covers basic aspects of optogenetics while also highlighting the fact that the fungal kingdom holds great potential as a source of light-sensing modules that could give rise to new optogenetic devices. Thus, although fungal photobiology has been mainly focused on the effect of light in fungal processes, and the photoreceptors involved in the response, it is easy to foresee that such studies can yield important insights to harness natural optogenetic circuits in the organism of origin while also exporting and domesticating them to be used in diverse other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An-Adirekkun JM, Stewart CJ, Geller SH et al (2019) A yeast optogenetic toolkit (yOTK) for gene expression control in Saccharomyces cerevisiae. Biotechnol Bioeng 117(3):886–893. https://doi.org/10.1002/bit.27234

    Article  CAS  PubMed  Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028

    PubMed  PubMed Central  Google Scholar 

  • Banerjee R, Batschauer A (2004) Plant blue-light receptors. Planta 220:498–502. https://doi.org/10.1007/s00425-004-1418-z

    Article  CAS  PubMed  Google Scholar 

  • Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baumschlager A, Aoki SK, Khammash M (2017) Dynamic blue light-inducible T7 RNA polymerases (Opto-T7RNAPs) for precise spatiotemporal gene expression control. ACS Synth Biol 6:2157–2167

    CAS  PubMed  Google Scholar 

  • Bayram O, Krappmann S, Seiler S et al (2008) Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138

    CAS  PubMed  Google Scholar 

  • Bayram O, Braus GH, Fischer R, Rodriguez-Romero J (2010) Spotlight on Aspergillus nidulans photosensory systems. Fungal Genet Biol 47:900–908

    CAS  PubMed  Google Scholar 

  • Beiert T, Bruegmann T, Sasse P (2014) Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes. Cardiovasc Res 102:507–516

    CAS  PubMed  Google Scholar 

  • Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE et al (1999a) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci U S A 96:8034–8039

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bieszke JA, Spudich EN, Scott KL et al (1999b) A eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like photochemically reactive pigment. Biochemistry 38:14138–14145

    CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The Fungi: 1 2, 3 … 5.1 million species? Am J Bot 98:426–438. https://doi.org/10.3732/ajb.1000298

    Article  PubMed  Google Scholar 

  • Blumenstein A, Vienken K, Tasler R et al (2005) The Aspergillus nidulans phytochrome FphA represses sexual development in red light. Curr Biol 15:1833–1838

    CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    CAS  PubMed  Google Scholar 

  • Brenker K, Osthof K, Yang J, Reth M (2016) LED thermo flow—combining optogenetics with flow cytometry. J Vis Exp. https://doi.org/10.3791/54707

  • Briggs WR (2014) Phototropism: some history some puzzles, and a look ahead. Plant Physiol 164:13–23. https://doi.org/10.1104/pp.113.230573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruegmann T, Malan D, Hesse M et al (2010) Optogenetic control of heart muscle in vitro and in vivo. Nat Methods 7:897–900

    CAS  PubMed  Google Scholar 

  • Bugaj LJ, Choksi AT, Mesuda CK et al (2013) Optogenetic protein clustering and signaling activation in mammalian cells. Nat Methods 10:249–252

    CAS  PubMed  Google Scholar 

  • Bugaj LJ, Spelke DP, Mesuda CK et al (2015) Regulation of endogenous transmembrane receptors through optogenetic Cry2 clustering. Nat Commun 6:6898

    CAS  PubMed  Google Scholar 

  • Canessa P, Schumacher J, Hevia MA et al (2013) Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex. PLoS One 8:e84223

    PubMed  PubMed Central  Google Scholar 

  • Carafoli E, Krebs J (2016) Why calcium? How calcium became the best communicator. J Biol Chem 291:20849–20857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castellanos F, Schmoll M, Martínez P et al (2010) Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47:468–476

    CAS  PubMed  Google Scholar 

  • Cesbron F, Brunner M, Diernfellner AC (2013) Light-dependent and circadian transcription dynamics in vivo recorded with a destabilized luciferase reporter in Neurospora. PLoS One 8:e83660

    PubMed  PubMed Central  Google Scholar 

  • Chen CH, Ringelberg CS, Gross RH et al (2009) Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 28:1029–1042

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CH, DeMay BS, Gladfelter AS et al (2010) Physical interaction between VIVID and white collar complex regulates photoadaptation in Neurospora. Proc Natl Acad Sci U S A 107:16715–16720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng P, Yang Y, Wang L et al (2003) WHITE COLLAR-1, a multifunctional neurospora protein involved in the circadian feedback loops, light sensing, and transcription repression of wc-2. J Biol Chem 278:3801–3808

    CAS  PubMed  Google Scholar 

  • Christie JM, Salomon M, Nozue K et al (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A 96:8779–8783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corrochano LM (2007) Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 6:725–736

    CAS  PubMed  Google Scholar 

  • Corrochano LM (2019) Light in the fungal world: from photoreception to gene transcription and beyond. Annu Rev Genet 53:149–170

    CAS  PubMed  Google Scholar 

  • Corrochano LM, Garre V (2010) Photobiology in the Zygomycota: multiple photoreceptor genes for complex responses to light. Fungal Genet Biol 47:893–899

    CAS  PubMed  Google Scholar 

  • Dasgupta A, Chen CH, Lee C et al (2015) Biological significance of photoreceptor photocycle length: VIVID photocycle governs the dynamic VIVID-white collar complex pool mediating photo-adaptation and response to changes in light intensity. PLoS Genet 11:e1005215

    PubMed  PubMed Central  Google Scholar 

  • Dean R, Van KJA, Pretorius ZA et al (2012) The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    PubMed  PubMed Central  Google Scholar 

  • Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29

    CAS  PubMed  Google Scholar 

  • Drepper T, Krauss U, Meyer zu BS et al (2011) Lights on and action! Controlling microbial gene expression by light. Appl Microbiol Biotechnol 90:23–40

    CAS  PubMed  Google Scholar 

  • Essen LO (2006) Photolyases and cryptochromes: common mechanisms of DNA repair and light-driven signaling? Curr Opin Struct Biol 16:51–59

    CAS  PubMed  Google Scholar 

  • Fairchild CD, Quail PH (1998) The phytochromes: photosensory perception and signal transduction. Symp Soc Exp Biol 51:85–92

    CAS  PubMed  Google Scholar 

  • Favory JJ, Stec A, Gruber H et al (2009) Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foley BJ, Stutts H, Schmitt SL et al (2018) Characterization of a vivid homolog in Botrytis cinerea. Photochem Photobiol 94:985–993

    CAS  PubMed  Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    CAS  PubMed  Google Scholar 

  • Froehlich AC, Chen CH, Belden WJ et al (2010) Genetic and molecular characterization of a cryptochrome from the filamentous fungus Neurospora crassa. Eukaryot Cell 9:738–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuller KK, Dunlap JC, Loros JJ (2016) Fungal light sensing at the bench and beyond. Adv Genet 96:1–51

    CAS  PubMed  Google Scholar 

  • Fuller KK, Dunlap JC, Loros JJ (2018) Light-regulated promoters for tunable, temporal, and affordable control of fungal gene expression. Appl Microbiol Biotechnol 102:3849–3863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Gautier A, Gauron C, Volovitch M et al (2014) How to control proteins with light in living systems. Nat Chem Biol 10:533–541

    CAS  PubMed  Google Scholar 

  • Gerhardt KP, Olson EJ, Castillo-Hair SM et al (2016) An open-hardware platform for optogenetics and photobiology. Sci Rep 6:35363

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gin E, Diernfellner AC, Brunner M, Höfer T (2013) The Neurospora photoreceptor VIVID exerts negative and positive control on light sensing to achieve adaptation. Mol Syst Biol 9:667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz ST, Carpenter EJ, Melkonian M et al (2016) Functional and topological diversity of LOV domain photoreceptors. Proc Natl Acad Sci U S A 113:E1442–E1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glantz ST, Berlew EE, Jaber Z et al (2018) Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc Natl Acad Sci U S A 115:E7720–E7727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274(546):563–567

    Google Scholar 

  • Guinn MT, Balázsi G (2019) Noise-reducing optogenetic negative-feedback gene circuits in human cells. Nucleic Acids Res 47:7703–7714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyalai-Korpos M, Nagy G, Mareczky Z et al (2010) Relevance of the light signaling machinery for cellulase expression in Trichoderma reesei (Hypocrea jecorina). BMC Res Notes 3:330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Boyden ES (2007) Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2:e299

    PubMed  PubMed Central  Google Scholar 

  • Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544

    CAS  PubMed  Google Scholar 

  • He Q, Liu Y (2005) Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • He Q, Cheng P, Yang Y et al (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    CAS  PubMed  Google Scholar 

  • Herrera-Estrella A, Horwitz BA (2007) Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64:5–15

    CAS  PubMed  Google Scholar 

  • Hevia MA, Canessa P, Müller-Esparza H, Larrondo LF (2015) A circadian oscillator in the fungus Botrytis cinerea regulates virulence when infecting Arabidopsis thaliana. Proc Natl Acad Sci U S A 112:8744–8749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes J, Lamparter T, Mittmann F et al (1997) A prokaryotic phytochrome. Nature 386:663

    CAS  PubMed  Google Scholar 

  • Hughes RM, Bolger S, Tapadia H, Tucker CL (2012) Light-mediated control of DNA transcription in yeast. Methods 58:385–391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt SM, Thompson S, Elvin M, Heintzen C (2010) VIVID interacts with the WHITE COLLAR complex and FREQUENCY-interacting RNA helicase to alter light and clock responses in Neurospora. Proc Natl Acad Sci U S A 107:16709–16714

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley JM, Chen CH, Loros JJ, Dunlap JC (2012) Light-inducible system for tunable protein expression in Neurospora crassa. G3 (Bethesda) 2:1207–1212

    CAS  Google Scholar 

  • Idnurm A, Heitman J (2005) Photosensing fungi: phytochrome in the spotlight. Curr Biol 15:R829–R832

    CAS  PubMed  Google Scholar 

  • Idnurm A, Verma S, Corrochano LM (2010) A glimpse into the basis of vision in the kingdom Mycota. Fungal Genet Biol 47:881–892

    PubMed  PubMed Central  Google Scholar 

  • Jenkins GI (2017) Photomorphogenic responses to ultraviolet-B light. Plant Cell Environ 40:2544–2557

    CAS  PubMed  Google Scholar 

  • Kaberniuk AA, Shemetov AA, Verkhusha VV (2016) A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat Methods 13:591–597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawano F, Suzuki H, Furuya A, Sato M (2015) Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun 6:6256

    CAS  PubMed  Google Scholar 

  • Kawano F, Okazaki R, Yazawa M, Sato M (2016) A photoactivatable Cre-loxP recombination system for optogenetic genome engineering. Nat Chem Biol 12:1059–1064

    CAS  PubMed  Google Scholar 

  • Kennedy MJ, Hughes RM, Peteya LA et al (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7:973–975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kojadinovic M, Laugraud A, Vuillet L et al (2008) Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopseudomonas palustris: enhancement of photosystem synthesis and limitation of respiration. Biochim Biophys Acta 1777:163–172

    CAS  PubMed  Google Scholar 

  • Kolar K, Knobloch C, Stork H et al (2018) OptoBase: a web platform for molecular optogenetics. ACS Synth Biol 7:1825–1828

    CAS  PubMed  Google Scholar 

  • Lee S, Park H, Kyung T et al (2014) Reversible protein inactivation by optogenetic trapping in cells. Nat Methods 11:633–636

    CAS  PubMed  Google Scholar 

  • Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Tucker CL (2017) Engineering genetically-encoded tools for optogenetic control of protein activity. Curr Opin Chem Biol 40:17–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Yu X, Li K et al (2008) Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis. Science 322:1535–1539

    CAS  PubMed  Google Scholar 

  • Lorrain S, Genoud T, Fankhauser C (2006) Let there be light in the nucleus! Curr Opin Plant Biol 9:509–514

    CAS  PubMed  Google Scholar 

  • Ma Z, Du Z, Chen X et al (2013) Fine tuning the LightOn light-switchable transgene expression system. Biochem Biophys Res Commun 440:419–423

    CAS  PubMed  Google Scholar 

  • Malzahn E, Ciprianidis S, Káldi K et al (2010) Photoadaptation in Neurospora by competitive interaction of activating and inhibitory LOV domains. Cell 142:762–772

    CAS  PubMed  Google Scholar 

  • Mao D, Li N, Xiong Z et al (2019) Single-cell optogenetic control of calcium signaling with a high-density micro-LED array. iScience 21:403–412

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez D, Berka RM, Henrissat B et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    CAS  PubMed  Google Scholar 

  • McIsaac RS, Oakes BL, Wang X et al (2013) Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast. Nucleic Acids Res 41:e57

    CAS  PubMed  Google Scholar 

  • McLellan MA, Rosenthal NA, Pinto AR (2017) Cre-loxP-mediated recombination: general principles and experimental considerations. Curr Protoc Mouse Biol 7:1–12

    PubMed  Google Scholar 

  • Melyan Z, Tarttelin EE, Bellingham J et al (2005) Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433:741–745

    CAS  PubMed  Google Scholar 

  • Möglich A, Moffat K (2010) Engineered photoreceptors as novel optogenetic tools. Photochem Photobiol Sci 9:1286–1300

    PubMed  Google Scholar 

  • Motta-Mena LB, Reade A, Mallory MJ et al (2014) An optogenetic gene expression system with rapid activation and deactivation kinetics. Nat Chem Biol 10:196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlhäuser WW, Fischer A, Weber W, Radziwill G (2017) Optogenetics—bringing light into the darkness of mammalian signal transduction. Biochim Biophys Acta Mol Cell Res 1864:280–292

    PubMed  Google Scholar 

  • Müller K, Engesser R, Metzger S et al (2013a) A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res 41:e77

    PubMed  PubMed Central  Google Scholar 

  • Müller K, Engesser R, Timmer J et al (2013b) Synthesis of phycocyanobilin in mammalian cells. Chem Commun (Camb) 49:8970–8972

    Google Scholar 

  • Müller K, Zurbriggen MD, Weber W (2014) Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat Protoc 9:622–632

    PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W et al (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci U S A 100:13940–13945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navara KJ, Nelson RJ (2007) The dark side of light at night: physiological epidemiological, and ecological consequences. J Pineal Res 43:215–224. https://doi.org/10.1111/j.1600-079x.2007.00473.x

    Article  CAS  PubMed  Google Scholar 

  • Nihongaki Y, Kawano F, Nakajima T, Sato M (2015a) Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat Biotechnol 33:755–760

    CAS  PubMed  Google Scholar 

  • Nihongaki Y, Yamamoto S, Kawano F et al (2015b) CRISPR-Cas9-based photoactivatable transcription system. Chem Biol 22:169–174

    CAS  PubMed  Google Scholar 

  • Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010) A complex photoreceptor system mediates the regulation by light of the conidiation genes con-10 and con-6 in Neurospora crassa. Fungal Genet Biol 47:352–363

    CAS  PubMed  Google Scholar 

  • Oravecz A, Baumann A, Máté Z et al (2006) CONSTITUTIVELY PHOTOMORPHOGENIC1 is required for the UV-B response in Arabidopsis. Plant Cell 18:1975–1990

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak GP, Strickland D, Vrana JD, Tucker CL (2014) Benchmarking of optical dimerizer systems. ACS Synth Biol 3:832–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pudasaini A, El-Arab KK, Zoltowski BD (2015) LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling. Front Mol Biosci 2:18

    PubMed  PubMed Central  Google Scholar 

  • Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422

    CAS  PubMed  Google Scholar 

  • Purschwitz J, Müller S, Kastner C et al (2008) Functional and physical interaction of blue- and red-light sensors in Aspergillus nidulans. Curr Biol 18:255–259

    CAS  PubMed  Google Scholar 

  • Quail PH (2010) Phytochromes. Curr Biol 20:R504–R507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Renicke C, Schuster D, Usherenko S et al (2013) A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem Biol 20:619–626

    CAS  PubMed  Google Scholar 

  • Rizzini L, Favory JJ, Cloix C et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    CAS  PubMed  Google Scholar 

  • Robertson JB, Davis CR, Johnson CH (2013) Visible light alters yeast metabolic rhythms by inhibiting respiration. Proc Natl Acad Sci U S A 110:21130–21135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rullan M, Benzinger D, Schmidt GW et al (2018) An optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation. Mol Cell 70:745–756.e6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salichos L, Rokas A (2010) The diversity and evolution of circadian clock proteins in fungi. Mycologia 102:269–278

    CAS  PubMed  Google Scholar 

  • Salinas F, Rojas V, Delgado V et al (2017) Optogenetic switches for light-controlled gene expression in yeast. Appl Microbiol Biotechnol 101:2629–2640

    CAS  PubMed  Google Scholar 

  • Salinas F, Rojas V, Delgado V et al (2018) Fungal light-oxygen-voltage domains for optogenetic control of gene expression and flocculation in yeast. MBio 9:e00626-18

    PubMed  PubMed Central  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt D, Cho YK (2015) Natural photoreceptors and their application to synthetic biology. Trends Biotechnol 33:80–91

    CAS  PubMed  Google Scholar 

  • Schmoll M (2018) Regulation of plant cell wall degradation by light in Trichoderma. Fungal Biol Biotechnol 5:10

    PubMed  PubMed Central  Google Scholar 

  • Schmoll M, Franchi L, Kubicek CP (2005) Envoy, a PAS/LOV domain protein of Hypocrea jecorina (Anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J (2012) Tools for Botrytis cinerea: new expression vectors make the gray mold fungus more accessible to cell biology approaches. Fungal Genet Biol 49:483–497

    CAS  PubMed  Google Scholar 

  • Schumacher J (2017) How light affects the life of Botrytis. Fungal Genet Biol 106:26–41

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger C, Linden H (2003) VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebille S, Ayad O, Chapotte-Baldacci CA et al (2017) Optogenetic approach for targeted activation of global calcium transients in differentiated C2C12 myotubes. Sci Rep 7:11108

    PubMed  PubMed Central  Google Scholar 

  • Seibel C, Tisch D, Kubicek CP, Schmoll M (2012) ENVOY is a major determinant in regulation of sexual development in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 11:885–895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu-Sato S, Huq E, Tepperman JM, Quail PH (2002) A light-switchable gene promoter system. Nat Biotechnol 20:1041–1044

    CAS  PubMed  Google Scholar 

  • Sorokina O, Kapus A, Terecskei K et al (2009) A switchable light-input, light-output system modelled and constructed in yeast. J Biol Eng 3:15

    PubMed  PubMed Central  Google Scholar 

  • Strickland D, Lin Y, Wagner E et al (2012) TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat Methods 9:379–384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Swartz TE, Corchnoy SB, Christie JM et al (2001) The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin. J Biol Chem 276:36493–36500

    CAS  PubMed  Google Scholar 

  • Taslimi A, Vrana JD, Chen D et al (2014) An optimized optogenetic clustering tool for probing protein interaction and function. Nat Commun 5:4925

    CAS  PubMed  Google Scholar 

  • Verma R, Annan RS, Huddleston MJ et al (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455–460

    CAS  PubMed  Google Scholar 

  • Wang X, Chen X, Yang Y (2012) Spatiotemporal control of gene expression by a light-switchable transgene system. Nat Methods 9:266–269

    CAS  PubMed  Google Scholar 

  • Wang W, Shi XY, Wei DZ (2014) Light-mediated control of gene expression in filamentous fungus Trichoderma reesei. J Microbiol Methods 103:37–39

    CAS  PubMed  Google Scholar 

  • Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128

    CAS  PubMed  Google Scholar 

  • Yang X, Lau KY, Sevim V, Tang C (2013) Design principles of the yeast G1/S switch. PLoS Biol 11:e1001673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yazawa M, Sadaghiani AM, Hsueh B, Dolmetsch RE (2009) Induction of protein-protein interactions in live cells using light. Nat Biotechnol 27:941–945

    CAS  PubMed  Google Scholar 

  • Yin R, Ulm R (2017) How plants cope with UV-B: from perception to response. Curr Opin Plant Biol 37:42–48

    CAS  PubMed  Google Scholar 

  • Yin C, Fan X, Ma K et al (2019) Identification and characterization of a novel light-induced promoter for recombinant protein production in Pleurotus ostreatus. J Microbiol 58(1):39–45

    PubMed  Google Scholar 

  • Zhang K, Cui B (2015) Optogenetic control of intracellular signaling pathways. Trends Biotechnol 33:92–100

    PubMed  Google Scholar 

  • Zhang G, Liu P, Wei W et al (2016a) A light-switchable bidirectional expression system in filamentous fungus Trichoderma reesei. J Biotechnol 240:85–93

    CAS  PubMed  Google Scholar 

  • Zhang L, Zhao X, Zhang G et al (2016b) Light-inducible genetic engineering and control of non-homologous end-joining in industrial eukaryotic microorganisms: LML 3.0 and OFN 1.0. Sci Rep 6:20761

    PubMed  PubMed Central  Google Scholar 

  • Zhao EM, Zhang Y, Mehl J et al (2018) Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555:683–687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zoltowski BD, Motta-Mena LB, Gardner KH (2013) Blue light-induced dimerization of a bacterial LOV-HTH DNA-binding protein. Biochemistry 52:6653–6661

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Research in our labs is funded by iBio Iniciativa Cientifica Milenio-MINECON, CONICYT/FONDEQUIP EQM130158, CONICYT/FONDECYT 1171151, 11170158, and the International Research Scholar program of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis F. Larrondo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojas, V., Salinas, F., Guzman-Zamora, L., Romero, A., Delgado, V., Larrondo, L.F. (2020). Exploiting Fungal Photobiology as a Source of Novel Bio-blocks for Optogenetic Systems. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_12

Download citation

Publish with us

Policies and ethics