Skip to main content

Chromatin Structure and Function in Neurospora crassa

  • Chapter
  • First Online:
Genetics and Biotechnology

Part of the book series: The Mycota ((MYCOTA,volume 2))

  • 1135 Accesses

Abstract

Eukaryotic DNA is packaged with histones and nonhistone proteins to form a heterogeneous protein-DNA complex called chromatin. Regulation of chromatin structure plays a central role in nearly all DNA-based processes in the nucleus—including transcription, DNA replication, DNA repair, and chromosome segregation. Regulation of chromatin structure is achieved through multiple interrelated mechanisms including modification of DNA and histones, binding of nonhistone proteins, ATP-dependent nucleosome remodeling, and higher-order compaction and folding of the chromatin fiber. These mechanisms work in concert to partition the genome into structurally and functionally distinct chromatin environments. Euchromatin is generally decondensed and transcriptionally active, whereas heterochromatin is highly condensed and transcriptionally silent. Work in the model fungus Neurospora crassa has been of particular importance for elucidating relationships between chromatin structure and function, serving as a model for other fungi and for eukaryotes in general. This chapter summarizes our current understanding of chromatin structure and function in N. crassa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhvaryu KK, Berge E, Tamaru H et al (2011) Substitutions in the amino-terminal tail of Neurospora histone H3 have varied effects on DNA methylation. PLoS Genet 7:e1002423

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhvaryu KK, Gessaman JD, Honda S et al (2015) The cullin-4 complex DCDC does not require E3 ubiquitin ligase elements to control heterochromatin in Neurospora crassa. Eukaryot Cell 14:25–28

    PubMed  Google Scholar 

  • Adhvaryu KK, Morris SA, Strahl BD, Selker EU (2005) Methylation of histone H3 lysine 36 is required for normal development in Neurospora crassa. Eukaryot Cell 4:1455–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adhvaryu KK, Selker EU (2008) Protein phosphatase PP1 is required for normal DNA methylation in Neurospora. Genes Dev 22:3391–3396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Berger SL, Cote J et al (2007) New nomenclature for chromatin-modifying enzymes. Cell 131:633–636

    CAS  PubMed  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    CAS  PubMed  Google Scholar 

  • Anderson DC, Green GR, Smith K, Selker EU (2010) Extensive and varied modifications in histone H2B of wild-type and histone Deacetylase 1 mutant of Neurospora crassa. Biochemistry 49:5244–5257

    CAS  PubMed  Google Scholar 

  • Basenko EY, Sasaki T, Ji L et al (2015) Genome-wide redistribution of H3K27me3 is linked to genotoxic stress and defective growth. Proc Natl Acad Sci U S A 112:E6339–E6348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belden WJ, Lewis ZA, Selker EU et al (2011) CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet 7:e1002166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Belden WJ, Loros JJ, Dunlap JC (2007) Execution of the circadian negative feedback loop in Neurospora requires the ATP-dependent chromatin-remodeling enzyme CLOCKSWITCH. Mol Cell 25:587–600

    CAS  PubMed  Google Scholar 

  • Bicocca VT, Ormsby T, Adhvaryu KK et al (2018) ASH1-catalyzed H3K36 methylation drives gene repression and marks H3K27me2/3-competent chromatin. elife 7:e41497. https://doi.org/10.7554/eLife.41497

    Article  PubMed  PubMed Central  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O et al (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brenna A, Grimaldi B, Filetici P, Ballario P (2012) Physical association of the WC-1 photoreceptor and the histone acetyltransferase NGF-1 is required for blue light signal transduction in Neurospora crassa. Mol Biol Cell 23:3863–3872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrozza MJ, Li B, Florens L et al (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123:581–592

    CAS  PubMed  Google Scholar 

  • Cha J, Zhou M, Liu Y (2013) CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep 14:923–930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cha J, Zhou M, Liu Y (2015) Mechanism of the Neurospora circadian clock, a FREQUENCY-centric view. Biochemistry 54:150–156

    CAS  PubMed  Google Scholar 

  • Chambers AL, Downs JA (2007) The contribution of the budding yeast histone H2A C-terminal tail to DNA-damage responses. Biochem Soc Trans 35:1519–1524

    CAS  PubMed  Google Scholar 

  • Chicas A, Forrest EC, Sepich S et al (2005) Small interfering RNAs that trigger posttranscriptional gene silencing are not required for the histone H3 Lys9 methylation necessary for transgenic tandem repeat stabilization in Neurospora crassa. Mol Cell Biol 25:3793–3801

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier CR, Cairns BR (2009) The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304

    CAS  PubMed  Google Scholar 

  • Clapier CR, Iwasa J, Cairns BR, Peterson CL (2017) Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol 18:407–422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins RE, Tachibana M, Tamaru H et al (2005) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280:5563–5570

    CAS  PubMed  Google Scholar 

  • Colognori D, Sunwoo H, Kriz AJ et al (2019) Xist Deletional analysis reveals an interdependency between Xist RNA and Polycomb complexes for spreading along the inactive X. Mol Cell 74:101–117.e10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Connolly LR, Smith KM, Freitag M (2013) The Fusarium graminearum histone H3 K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters. PLoS Genet 9:e1003916

    PubMed  PubMed Central  Google Scholar 

  • Dang Y, Cheng J, Sun X et al (2016) Antisense transcription licenses nascent transcripts to mediate transcriptional gene silencing. Genes Dev 30:2417–2432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dang Y, Li L, Guo W et al (2013) Convergent transcription induces dynamic DNA methylation at disiRNA loci. PLoS Genet 9:e1003761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311

    CAS  PubMed  Google Scholar 

  • Dickey JS, Redon CE, Nakamura AJ et al (2009) H2AX: functional roles and potential applications. Chromosoma 118:683–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Q, Wang Y, Qi S et al (2018) Histone variant H2A.Z antagonizes the positive effect of the transcriptional activator CPC1 to regulate catalase-3 expression under normal and oxidative stress conditions. Free Radic Biol Med 121:136–148

    CAS  PubMed  Google Scholar 

  • Downs JA, Lowndes NF, Jackson SP (2000) A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004

    CAS  PubMed  Google Scholar 

  • Freitag M, Hickey PC, Khlafallah TK et al (2004a) HP1 is essential for DNA methylation in Neurospora. Mol Cell 13:427–434

    CAS  PubMed  Google Scholar 

  • Freitag M, Lee DW, Kothe GO et al (2004b) DNA methylation is independent of RNA interference in Neurospora. Science 304:1939

    CAS  PubMed  Google Scholar 

  • Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A 99:8802–8807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gacek-Matthews A, Berger H, Sasaki T et al (2016) KdmB, a Jumonji histone H3 Demethylase, regulates genome-wide H3K4 trimethylation and is required for normal induction of secondary metabolism in Aspergillus nidulans. PLoS Genet 12:e1006222

    PubMed  PubMed Central  Google Scholar 

  • Gacek-Matthews A, Noble LM, Gruber C et al (2015) KdmA, a histone H3 demethylase with bipartite function, differentially regulates primary and secondary metabolism in Aspergillus nidulans. Mol Microbiol 96:839–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    CAS  PubMed  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    CAS  PubMed  Google Scholar 

  • Galazka JM, Klocko AD, Uesaka M et al (2016) Neurospora chromosomes are organized by blocks of importin alpha-dependent heterochromatin that are largely independent of H3K9me3. Genome Res 26:1069–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gessaman JD, Selker EU (2017) Induction of H3K9me3 and DNA methylation by tethered heterochromatin factors in. Proc Natl Acad Sci U S A 114:E9598–E9607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gladyshev E (2017) Repeat-induced point mutation and other genome defense mechanisms in fungi. Microbiol Spectr 5:FUNK-0042-2017. https://doi.org/10.1128/microbiolspec.FUNK-0042-2017

    Article  Google Scholar 

  • Gladyshev E, Kleckner N (2017) DNA sequence homology induces cytosine-to-thymine mutation by a heterochromatin-related pathway in Neurospora. Nat Genet 49:887–894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong F, Chiu L-Y, Miller KM (2016) Acetylation reader proteins: linking acetylation signaling to genome maintenance and cancer. PLoS Genet 12:e1006272

    PubMed  PubMed Central  Google Scholar 

  • Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    CAS  PubMed  Google Scholar 

  • Grimaldi B, Coiro P, Filetici P et al (2006) The Neurospora crassa White Collar-1 dependent blue light response requires acetylation of histone H3 lysine 14 by NGF-1. Mol Biol Cell 17:4576–4583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grimbergen AJ, Siebring J, Solopova A, Kuipers OP (2015) Microbial bet-hedging: the power of being different. Curr Opin Microbiol 25:67–72

    PubMed  Google Scholar 

  • Gu Q, Ji T, Sun X et al (2017) Histone H3 lysine 9 methyltransferase FvDim5 regulates fungal development, pathogenicity and osmotic stress responses in Fusarium verticillioides. FEMS Microbiol Lett 364. https://doi.org/10.1093/femsle/fnx184

  • He M, Xu Y, Chen J et al (2018) MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus Magnaporthe oryzae. Autophagy 14:1543–1561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heitz E (1928) Das Heterochromatin der Moose

    Google Scholar 

  • Henikoff S, Smith MM (2015) Histone variants and epigenetics. Cold Spring Harb Perspect Biol 7:a019364

    PubMed  PubMed Central  Google Scholar 

  • Henriksen MA (2007) Epigenetics. In: Allis CD, Jenuwein T, Reinberg D, Caparros M-L (eds) The quarterly review of biology, vol 82. Cold Spring Harbor Laboratory Press, New York, pp 416–416. $150.00. x 502 p; ill.; index. ISBN: 0-87969-724-5. 2007

    Google Scholar 

  • Honda S, Bicocca VT, Gessaman JD et al (2016) Dual chromatin recognition by the histone deacetylase complex HCHC is required for proper DNA methylation in Neurospora crassa. Proc Natl Acad Sci U S A 113:E6135–E6144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda S, Lewis ZA, Huarte M et al (2010) The DMM complex prevents spreading of DNA methylation from transposons to nearby genes in Neurospora crassa. Genes Dev 24:443–454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda S, Lewis ZA, Shimada K et al (2012) Heterochromatin protein 1 forms distinct complexes to direct histone deacetylation and DNA methylation. Nat Struct Mol Biol 19:471–477. S1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honda S, Selker EU (2008) Direct interaction between DNA methyltransferase DIM-2 and HP1 is required for DNA methylation in Neurospora crassa. Mol Cell Biol 28:6044–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley J, Loros JJ, Dunlap JC (2015) Dissecting the mechanisms of the clock in Neurospora. Methods Enzymol 551:29–52

    CAS  PubMed  Google Scholar 

  • Iyer V, Struhl K (1995) Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14:2570–2579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–560

    CAS  PubMed  Google Scholar 

  • Jamieson K, McNaught KJ, Ormsby T et al (2018) Telomere repeats induce domains of H3K27 methylation in Neurospora. elife 7:e31216. https://doi.org/10.7554/eLife.31216

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamieson K, Rountree MR, Lewis ZA et al (2013) Regional control of histone H3 lysine 27 methylation in Neurospora. Proc Natl Acad Sci U S A 110:6027–6032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamieson K, Wiles ET, McNaught KJ et al (2016) Loss of HP1 causes depletion of H3K27me3 from facultative heterochromatin and gain of H3K27me2 at constitutive heterochromatin. Genome Res 26:97–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janevska S, Baumann L, Sieber CMK et al (2018) Elucidation of the two H3K36me3 histone methyltransferases Set2 and Ash1 in Fusarium fujikuroi unravels their different chromosomal targets and a major impact of Ash1 on genome stability. Genetics 208:153–171

    CAS  PubMed  Google Scholar 

  • Janssen A, Colmenares SU, Karpen GH (2018) Heterochromatin: guardian of the genome. Annu Rev Cell Dev Biol 34:265–288

    CAS  PubMed  Google Scholar 

  • Jiao L, Liu X (2015) Structural basis of histone H3K27 trimethylation by an active polycomb repressive complex 2. Science 350:aac4383

    PubMed  PubMed Central  Google Scholar 

  • Joshi AA, Struhl K (2005) Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to pol II elongation. Mol Cell 20:971–978

    CAS  PubMed  Google Scholar 

  • Keogh M-C, Kurdistani SK, Morris SA et al (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123:593–605

    CAS  PubMed  Google Scholar 

  • Kizer KO, Phatnani HP, Shibata Y et al (2005) A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol 25:3305–3316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klocko AD, Ormsby T, Galazka JM et al (2016) Normal chromosome conformation depends on subtelomeric facultative heterochromatin in Neurospora crassa. Proc Natl Acad Sci U S A 113:15048–15053

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klocko AD, Rountree MR, Grisafi PL et al (2015) Neurospora importin α is required for normal heterochromatic formation and DNA methylation. PLoS Genet 11:e1005083

    PubMed  PubMed Central  Google Scholar 

  • Klocko AD, Uesaka M, Ormsby T et al (2019) Nucleosome positioning by an evolutionarily conserved chromatin remodeler prevents aberrant DNA methylation in. Genetics 211:563–578

    CAS  PubMed  Google Scholar 

  • Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184:868–871

    CAS  PubMed  Google Scholar 

  • Kouzminova E, Selker EU (2001) Dim-2 encodes a DNA methyltransferase responsible for all known cytosine methylation in Neurospora. EMBO J 20:4309–4323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krietenstein N, Wal M, Watanabe S et al (2016) Genomic nucleosome organization reconstituted with pure proteins. Cell 167:709–721.e12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krogan NJ, Kim M, Tong A et al (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II. Mol Cell Biol 23:4207–4218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lai WKM, Pugh BF (2017) Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat Rev Mol Cell Biol 18:548–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lan H, Wu L, Sun R et al (2019) The HosA histone deacetylase regulates alatoxin biosynthesis through direct regulation of aflatoxin cluster genes. Mol Plant-Microbe Interact 32(9):1210–1228. MPMI01190033R

    Google Scholar 

  • Lee H-C, Li L, Gu W et al (2010) Diverse pathways generate microRNA-like RNAs and dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis ZA (2017) Polycomb Group Systems in Fungi: new models for understanding Polycomb repressive complex 2. Trends Genet 33:220–231

    CAS  PubMed  Google Scholar 

  • Lewis ZA, Adhvaryu KK, Honda S et al (2010a) DNA methylation and normal chromosome behavior in Neurospora depend on five components of a histone methyltransferase complex, DCDC. PLoS Genet 6:e1001196

    PubMed  PubMed Central  Google Scholar 

  • Lewis ZA, Adhvaryu KK, Honda S et al (2010b) Identification of DIM-7, a protein required to target the DIM-5 H3 methyltransferase to chromatin. Proc Natl Acad Sci U S A 107:8310–8315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis ZA, Honda S, Khlafallah TK et al (2009) Relics of repeat-induced point mutation direct heterochromatin formation in Neurospora crassa. Genome Res 19:427–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Dang Y, Matsu-Ura T et al (2017) DNA replication is required for circadian clock function by regulating rhythmic nucleosome composition. Mol Cell 67:203–213.e4

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu CL, Kaplan T, Kim M et al (2005) Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328

    PubMed  PubMed Central  Google Scholar 

  • Lombardi LM, Ellahi A, Rine J (2011) Direct regulation of nucleosome density by the conserved AAA-ATPase Yta7. Proc Natl Acad Sci U S A 108:E1302–E1311

    PubMed  PubMed Central  Google Scholar 

  • Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389:251–260

    CAS  PubMed  Google Scholar 

  • Maeda K, Izawa M, Nakajima Y et al (2017) Increased metabolite production by deletion of an HDA1-type histone deacetylase in the phytopathogenic fungi, Magnaporthe oryzae (Pyricularia oryzae) and Fusarium asiaticum. Lett Appl Microbiol 65:446–452

    CAS  PubMed  Google Scholar 

  • Margolin BS, Garrett-Engele PW, Stevens JN et al (1998) A methylated Neurospora 5S rRNA pseudogene contains a transposable element inactivated by repeat-induced point mutation. Genetics 149:1787–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martienssen R, Moazed D (2015) RNAi and heterochromatin assembly. Cold Spring Harb Perspect Biol 7:a019323

    PubMed  PubMed Central  Google Scholar 

  • Miao VP, Freitag M, Selker EU (2000) Short TpA-rich segments of the zeta-eta region induce DNA methylation in Neurospora crassa. J Mol Biol 300:249–273

    CAS  PubMed  Google Scholar 

  • Möller M, Schotanus K, Soyer JL et al (2019) Destabilization of chromosome structure by histone H3 lysine 27 methylation. PLoS Genet 15:e1008093

    PubMed  PubMed Central  Google Scholar 

  • Neigeborn L, Carlson M (1984) Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics 108:845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niehaus E-M, Studt L, von Bargen KW et al (2016) Sound of silence: the beauvericin cluster in Fusarium fujikuroi is controlled by cluster-specific and global regulators mediated by H3K27 modification. Environ Microbiol 18:4282–4302

    CAS  PubMed  Google Scholar 

  • Nielsen PR, Nietlispach D, Mott HR et al (2002) Structure of the HP1 chromodomain bound to histone H3 methylated at lysine 9. Nature 416:103–107

    CAS  PubMed  Google Scholar 

  • Olins AL, Olins DE (1974) Spheroid chromatin units (v bodies). Science 183:330–332

    CAS  PubMed  Google Scholar 

  • Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300

    CAS  PubMed  Google Scholar 

  • Palmer JM, Bok JW, Lee S et al (2013) Loss of CclA, required for histone 3 lysine 4 methylation, decreases growth but increases secondary metabolite production in Aspergillus fumigatus. PeerJ 1:e4

    PubMed  PubMed Central  Google Scholar 

  • Pfannenstiel BT, Greco C, Sukowaty AT, Keller NP (2018) The epigenetic reader SntB regulates secondary metabolism, development and global histone modifications in Aspergillus flavus. Fungal Genet Biol 120:9–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pokholok DK, Harbison CT, Levine S et al (2005) Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122:517–527

    CAS  PubMed  Google Scholar 

  • Pueschel R, Coraggio F, Meister P (2016) From single genes to entire genomes: the search for a function of nuclear organization. Development 143:910–923

    CAS  PubMed  Google Scholar 

  • Rabl C (1885) Ăśber Zelltheilung. Morphologisches Jahrbuch 10

    Google Scholar 

  • Raduwan H, Isola AL, Belden WJ (2013) Methylation of histone H3 on lysine 4 by the lysine methyltransferase SET1 protein is needed for normal clock gene expression. J Biol Chem 288:8380–8390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rea S, Eisenhaber F, O’Carroll D et al (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406:593–599

    CAS  PubMed  Google Scholar 

  • Rountree MR, Selker EU (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 11:2383–2395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sancar C, Ha N, Yilmaz R et al (2015) Combinatorial control of light induced chromatin remodeling and gene activation in Neurospora. PLoS Genet 11:e1005105

    PubMed  PubMed Central  Google Scholar 

  • Sasaki T, Lynch KL, Mueller CV et al (2014) Heterochromatin controls ÎłH2A localization in Neurospora crassa. Eukaryot Cell 13:990–1000

    PubMed  PubMed Central  Google Scholar 

  • Schmitt AD, Hu M, Ren B (2016) Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17:743–755

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segal E, Widom J (2009) Poly(dA:dT) tracts: major determinants of nucleosome organization. Curr Opin Struct Biol 19:65–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selker EU (2002) Repeat-induced gene silencing in fungi. Adv Genet 46:439–450

    CAS  PubMed  Google Scholar 

  • Selker EU, Cambareri EB, Jensen BC, Haack KR (1987) Rearrangement of duplicated DNA in specialized cells of Neurospora. Cell 51:741–752

    CAS  PubMed  Google Scholar 

  • Selker EU, Fritz DY, Singer MJ (1993) Dense nonsymmetrical DNA methylation resulting from repeat-induced point mutation in Neurospora. Science 262:1724–1728

    CAS  PubMed  Google Scholar 

  • Seymour M, Ji L, Santos AM et al (2016) Histone H1 limits DNA methylation in Neurospora crassa. G3 6:1879–1889

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shatkin AJ, Tatum EL (1959) Electron microscopy of Neurospora crassa mycelia. J Biophys Biochem Cytol 6:423–426

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shwab EK, Bok JW, Tribus M et al (2007) Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell 6:1656–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon JA, Kingston RE (2013) Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Dobosy JR, Reifsnyder JE et al (2010) H2B- and H3-specific histone deacetylases are required for DNA methylation in Neurospora crassa. Genetics 186:1207–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KM, Kothe GO, Matsen CB et al (2008) The fungus Neurospora crassa displays telomeric silencing mediated by multiple sirtuins and by methylation of histone H3 lysine 9. Epigenetics Chromatin 1:1–20

    Google Scholar 

  • Smith KM, Phatale PA, Sullivan CM et al (2011) Heterochromatin is required for normal distribution of Neurospora crassa CenH3. Mol Cell Biol 31:2528–2542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Solovei I, Thanisch K, Feodorova Y (2016) How to rule the nucleus: divide et impera. Curr Opin Cell Biol 40:47–59

    CAS  PubMed  Google Scholar 

  • Soukup AA, Chiang Y-M, Bok JW et al (2012) Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 86:314–330

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soyer JL, El Ghalid M, Glaser N et al (2014) Epigenetic control of effector gene expression in the plant pathogenic fungus Leptosphaeria maculans. PLoS Genet 10:e1004227

    PubMed  PubMed Central  Google Scholar 

  • Stern M, Jensen R, Herskowitz I (1984) Five SWI genes are required for expression of the HO gene in yeast. J Mol Biol 178:853–868

    CAS  PubMed  Google Scholar 

  • Studt L, Rösler SM, Burkhardt I et al (2016) Knock-down of the methyltransferase Kmt6 relieves H3K27me3 and results in induction of cryptic and otherwise silent secondary metabolite gene clusters in Fusarium fujikuroi. Environ Microbiol 18:4037–4054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun G, Zhou Z, Liu X et al (2016) Suppression of WHITE COLLAR-independent frequency transcription by histone H3 lysine 36 methyltransferase SET-2 is necessary for clock function in Neurospora. J Biol Chem 291:11055–11063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Talbert PB, Henikoff S (2010) Histone variants—ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol 11:264–275

    CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    CAS  PubMed  Google Scholar 

  • Tamaru H, Selker EU (2003) Synthesis of signals for de novo DNA methylation in Neurospora crassa. Mol Cell Biol 23:2379–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamaru H, Zhang X, McMillen D et al (2003) Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34:75–79

    CAS  PubMed  Google Scholar 

  • Trojer P, Reinberg D (2007) Facultative heterochromatin: is there a distinctive molecular signature? Mol Cell 28:1–13

    CAS  PubMed  Google Scholar 

  • Verdone L, Caserta M, Di Mauro E (2005) Role of histone acetylation in the control of gene expression. Biochem Cell Biol 83:344–353

    CAS  PubMed  Google Scholar 

  • Wang Y, Dong Q, Ding Z et al (2016) Regulation of Neurospora catalase-3 by global heterochromatin formation and its proximal heterochromatin region. Free Radic Biol Med 99:139–152

    CAS  PubMed  Google Scholar 

  • Wang B, Kettenbach AN, Gerber SA et al (2014) Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet 10:e1004599

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Smith KM, Taylor JW, et al (2015) Endogenous small RNA mediates meiotic silencing of a novel DNA transposon. G3 5:1949–1960

    Google Scholar 

  • Wendte JM, Pikaard CS (2017) The RNAs of RNA-directed DNA methylation. Biochim Biophys Acta Gene Regul Mech 1860:140–148

    CAS  PubMed  Google Scholar 

  • Xiong L, Adhvaryu KK, Selker EU, Wang Y (2010) Mapping of lysine methylation and acetylation in core histones of Neurospora crassa. Biochemistry 49:5236–5243

    CAS  PubMed  Google Scholar 

  • Xu H, Wang J, Hu Q et al (2010) DCAF26, an adaptor protein of Cul4-based E3, is essential for DNA methylation in Neurospora crassa. PLoS Genet 6:e1001132

    PubMed  PubMed Central  Google Scholar 

  • Xue Z, Ye Q, Anson SR et al (2014) Transcriptional interference by antisense RNA is required for circadian clock function. Nature 514:650–653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Qian S, Scheid RN et al (2018) EBS is a bivalent histone reader that regulates floral phase transition in Arabidopsis. Nat Genet 50:1247–1253

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zacharias H (1995) Emil Heitz (1892-1965): chloroplasts, heterochromatin, and polytene chromosomes. Genetics 141:7–14

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Tamaru H, Khan SI et al (2002) Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell 111:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yang Z, Khan SI et al (2003) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12:177–185

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Shen Y, Yang S et al (2010) Ubiquitin ligase components Cullin4 and DDB1 are essential for DNA methylation in Neurospora crassa. J Biol Chem 285:4355–4365

    CAS  PubMed  Google Scholar 

  • Zhou Y, Cambareri EB, Kinsey JA (2001) DNA methylation inhibits expression and transposition of the Neurospora tad retrotransposon. Mol Gen Genomics 265:748–754

    CAS  Google Scholar 

  • Zhou Z, Liu X, Hu Q et al (2013) Suppression of WC-independent frequency transcription by RCO-1 is essential for Neurospora circadian clock. Proc Natl Acad Sci U S A 110:E4867–E4874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Ramakrishnan M, Park J, Belden WJ (2019) Histone H3 lysine 4 methyltransferase is required for facultative heterochromatin at specific loci. BMC Genomics 20:350

    PubMed  PubMed Central  Google Scholar 

  • Zou JX, Revenko AS, Li LB et al (2007) ANCCA, an estrogen-regulated AAA+ ATPase coactivator for ERalpha, is required for coregulator occupancy and chromatin modification. Proc Natl Acad Sci U S A 104:18067–18072

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew D. Klocko or Zachary A. Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Courtney, A.J., Ferraro, A.R., Klocko, A.D., Lewis, Z.A. (2020). Chromatin Structure and Function in Neurospora crassa. In: Benz, J.P., Schipper, K. (eds) Genetics and Biotechnology. The Mycota, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-49924-2_1

Download citation

Publish with us

Policies and ethics