2.5.1 Chernobyl Disaster—Shifts of Three Decades
The population of Polesye region, where Chernobyl disaster occurred, has been decreasing since 1970 (Khomra 1989), first to a moderate extent, then at a higher rate since 1986. The data series spanning three decades since the disaster reveals that the consequences of the Chernobyl accident are reflected most characteristically by the demographic trends of the 1990s even though evacuation measures can be reached back to the 1980s (Fig. 2.2). This is partly because during the census in 1989, three years after the disaster, many people still stayed in the evacuation zone and received permanent housing in the following years after that.
The annual population growth of Ukraine amounted barely to 200,000 in the 1980s. Such a wave of resettlement mobilising 100,000 in 1986–87 and additional 100,000 during the following ten years thoroughly reshaped the total population pattern in large part of the country. In Belarus, the population increased in the 1980s by around 30,000 people each year, while in consequence of the Chernobyl disaster, 25–30,000 people were resettled in 1986–87, followed by additional 100,000–130,000 during the 1990s in a country with a population of barely 10 million. The effect was even more dramatic because the evacuation affected around 1–1.6% of the country’s total population. The corresponding figure was 0.4% in Ukraine and 0.04% in Russia. Even in 2010, Belarus had the highest share of population living in contaminated areas (Tables 2.3and 2.4). No other country has experienced the impact of a nuclear accident to the same degree. Given the large number of people who were resettled, the recipient regions—in particular the major towns and their environs—saw a relatively more favourable demographic trend in the 1990s.
Table 2.3 People living in administrative units in 2010, where radiation dose was higher than 0.25 μSv/h during Chernobyl (in 1986) and Fukushima (in 2011) disasters
Table 2.4 Share of population and area of administrative divisions in selected countries in 2010, where radioactive contamination was higher than 0.25 μSv/h after Chernobyl (in 1986) and Fukushima (in 2011)
When reviewing the entire affected area within the three countries, a general dependence of the population change on the proportion of areas of radioactive contamination was only apparent in the 1990s (Table 2.5). The internal population change of entire Ukraine and Belarus was strongly under the influence of the resettlement measures rather than by natural change or other types of internal migration between 1989 and 2001. In Russia, the depopulation of affected areas was less significant. Because of dissolution of the Soviet Union, a large number of ethnic Russian political refugees from other republics arrived and resettled into these areas counterbalancing the out migration caused by the disaster (Veselkova et al. 1994).
Table 2.5 Correlation between share of contaminated surface (>1 µSv/h) of admin. districts and selected demographic indicators
From the 2000s, a significant correlation between population change and the share of contaminated areas could not be found. Demographic “waves” of resettlement calmed down by the 2000s, and even returning migration to the former places could be detected. The population of several small towns that lay in the contaminated areas in Belarus but had been cleaned−up (Naroŭlia, Brahin and Chojniki) began to grow once more (Table 2.6). In these towns that have undergone complex rehabilitation, people receive significant state assistance as well as apartments built with governmental funding. In such small towns, the presence of young families with small children is striking. For this reason, in the contaminated areas, the population is becoming urbanised more rapidly than elsewhere. These areas have become Belarus’s “most rapidly urbanising” regions (Table 2.5). The ratio of urban population is on the increase in Ukraine as well, but it is also a result of its close location to the Kyiv agglomeration.
Table 2.6 Change of total population of some towns in contaminated area
Chernobyl did not change the direction of regional population dynamics. The decline in population would be significant even without Chernobyl; however, it did accelerate the process. The population density was low even before the disaster, and the evacuations merely accentuated this state of affairs. Natural population reproduction data (crude birth and crude death ratio) around 2010 does not reflect any correlation with higher radiation levels any more, suggesting the decline in the birth rate was only temporary after the disaster and connected with the uncertainties because of resettlement. The disaster did, however, fundamentally alter the urbanisation processes and the network of villages. Smaller villages in remote areas disappeared in significant numbers, whereas small towns and minor urban centres became relatively more “stable”.
The negative demographic processes of the Polesye combined with the disaster-caused outmigration and resettlement poked a huge hole in the demographic space of the region, which is especially spectacular in the changing population density within rural areas. Even the districts outside the evacuated zone became the most sparsely populated areas of Belarus and Ukraine (Fig. 2.3).
2.5.2 Fukushima—Recent Demographic Processes
Regional population structure changed fundamentally after the construction of the nuclear power plants in the coastal area of Fukushima Prefecture. According to a case study conducted in Tomioka Town by Kajita (2014), residents consisted of three groups: (1) people who lived in the area originally, before the construction of the nuclear power plant, (2) “newcomers” who migrated there to work for construction and electric industries and had already settled for a long term and (3) short-term stayers who were sent by TEPCO and other related companies. Overall, the total population increased in the 1970s when people migrated for work. However, during the 1990–2000s, it gradually decreased again or levelled off. Along with such population decline, the elderly ratio (people aged 65 years and over) went up to around 20–30% in 2010.
The nuclear accident had almost irreversible impacts on regional population structure. As we explained above, group evacuation was organised by municipality offices, and evacuees temporally stayed at city halls, schools and hotels in nearby major cities such as Iwaki, Fukushima, Koriyama and Nihonmatsu. An exception is Futaba, which chose Saitama Prefecture, located around 200 kms away to the south. Understandably, some people outside the evacuation areas escaped farther, stayed at their friends’ or relatives’ houses temporarily and after that found new houses by themselves. According to official statistics, the total number of evacuees including both ordered and voluntary evacuations reached the maximum number (164,000 people) in May 2012 and 79,000 people remained evacuated as of February 2017 (Asahi 2017a).
In Japan, there are two types of temporal houses provided for evacuees by municipality: prefabricated houses specially constructed after the accident and existing rented houses that municipalities leased. The maximum number of house units provided was 16,800 in 2013 for the former type and 25,554 in 2012 for the latter type (Fukushima Prefecture 2017). Evacuees from the same municipality were arranged to stay in the same prefabricated house complex to maintain the original community and human network (Fig. 2.4). As the map suggests, most of them are located in major cities where infrastructures are provided and daily necessities are easily purchased. In contrast, the detail spatial distribution of households staying in rented houses is not publicly reported, but it can be assumed to be more dispersed and close to major cities based on the locations of housing supply before the accident.
The Japanese population census 2015 provides insights about where people were displaced after the accident (Fig. 2.5). Table 2.7 provides the proportion of evacuees who live outside or inside Fukushima Prefecture by five municipalities which lost their population almost completely after the accident. For those who stay in the prefecture, the proportions of current residences in four major cities are presented. Analysing the proportions disaggregated by age group, we found that the younger they are, the more they are likely to leave Fukushima Prefecture. Around 30–40% of people aged below 40 years old choose to find new residence outside Fukushima Prefecture, for example, Tokyo Metropolitan Area and Sendai in Miyagi Prefecture. Young people can choose a new place which is distant from their home municipality because they have less economic and social capital which keeps them staying in an area closer to their previous residence (Isoda 2015).
Table 2.7 Proportions of internal migrants by destination (based on 2010, 2015 Japanese census populations)
As far as those who remain in Fukushima Prefecture are concerned, people are likely to select the nearest major city. For example, in the case of Iitate Village, 60–70% of residents among those who remain in Fukushima Prefecture chose Fukushima city located 35 kms away. Around 40% of residents from Tomioka selected Iwaki. These results partly reflect the fact that about 55,239 people still lived in temporary houses at the end of September 2015 (Fukushima Prefecture 2017), when the Japanese population census was carried out. The figures in Table 2.7 partially include people already resettled. According to questionnaire surveys conducted by the Reconstruction Agency (2016) in 2015–2016, around 30–40% of affected families bought a new house and settled in a new community. Furthermore, based on the number of recipients of special provisions for housing acquisition, 85% of them seem to have found a newly owned house in Fukushima Prefecture (Asahi 2016). The locations of new houses are likely to be in major cities because land prices in places such as Fukushima City, Iwaki City have increased or at least levelled off.
The sudden population increase caused by mass displacement unintentionally led to several complaints among residents in receiving municipalities. For example, local newspapers reported that traffic jams became more frequent, the queues in hospitals were longer, and housing rent increased. It should also be noted that junior and high school students evacuated from Fukushima-affected areas experienced bullying concerning the nuclear accident at school. In this way, resettlement after the nuclear accident, unfortunately, has been accompanied by various hardships in the new environment for evacuees. Figure 2.6 shows those municipatities where evacuees were hosted (red colour), changing the demographic trends between 2010 and 2015 in these settlements.
In Fukushima, affected municipalities are planning several resettlement sites outside evacuation areas, but they seem to be temporal, not permanent resettlements. This is because firstly, some evacuees’ wish to return to their hometowns, and secondly, permanent resettlement sites managed by the affected municipality in the receiving municipality are practically difficult under the current Japanese local government system. There are several issues to solve, such as whether dual resident registration can be admitted or not and how to share taxes and public services among municipalities (Tsunoda 2015). Therefore, in principle, affected municipalities are making every effort to enable residents to return to their homes through decontamination. The evacuation order has already been lifted for some evacuation areas, and radiation levels dropped as a result of the natural degradation and decontamination. In the spring of 2017, the evacuation order excepting the highest contaminated area was lifted for the majority of evacuation areas in Iitate Village, Kawamata Town, Namie Town and Tomioka Town. Approximately, 32,000 people lived there before the accident (Asahi 2017b). The total evacuation areas being lifted until April 2017 was 70% of the initial evacuation areas issued immediately after the accident. Yet, many people decided not to return. They not only worried about the radiation level, but basic amenities (e.g. shops, hospitals) and employment opportunities are limited. For example, in Naraha Town, the evacuation order was lifted for all evacuation areas, which covered 80% of the municipality. According to official town records (Naraha Town 2016), only 781 people, which is equivalent to 10.6% of the total population before the accident, have returned. Among them, the proportion of people aged 65 years and over reached 53% (the elderly ratio in 2010 was 24%).
Young people resettled outside Fukushima Prefecture, while many of the migrants who returned are elderly people. This trend accompanies geographical separations of generations in rural areas where young families and their parents traditionally lived together. In addition, since the 1970s, nuclear industries had attracted many migrants from the outside. Many of the first generations reached or are reaching the age of retirement (65 years old). Thus, it is a difficult question whether such people who migrated from the outside previously and settled for a long time will choose to return again. Pre-disaster population structure characterised by a mixture of rural and industrialised areas makes the estimation of future demographic trends difficult in Fukushima-affected areas.
Using spatial mobile statistics, we mapped the average of hourly population per 500 m grid cell in June 2016 and compared it to 2010 population census data to analyse the changes (Fig. 2.7). Comparing the two maps, we found that the geographic distribution of grid cells with high population density almost remained the same outside the evacuation areas between two time periods, while inside, they disappeared almost completely. In particular, there is no peak in population density distribution in the town centre proximity to railway stations, implying that densely populated residential areas no longer exist after the accident. However, there are several grid cells with somewhat higher population density in areas close to the nuclear power plant in Okuma Town and Tomioka Town. This population distribution does not well overlap with the census one, suggesting that most of the people are temporal visitors such as engineering and technical workers at nuclear power plants.
Eighty percent of the area of Naraha Town, located within the 20 km radius from the nuclear power plant, was previously included in the evacuation areas. As we discussed above, the evacuation order was lifted for these areas in September 2015, and the total number of grid cells with population density above 100 people also increased from 32 grid cells in June 2015 to 41 grid cells in June 2016, among 472 grid cells across Naraha Town. This result may suggest that people already returned in these areas or people can enter them more frequently than before, perhaps in preparation for returning. The Japanese population census is conducted every five years, and it is not able to capture such temporal dynamics of population changes. Using mobile spatial statistics will help to continuously monitor and explore the reconstruction progress after the evacuation areas are lifted.