Skip to main content

IMotions’ Automatic Facial Recognition & Text-Based Content Analysis of Basic Emotions & Empathy in the Application of the Interactive Neurocommunicative Technique LNCBT (Line & Numbered Concordant Basic Text)

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Communication, Organization and Work (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12199))

Included in the following conference series:

Abstract

This research paper focuses on the effectiveness of the Line Numbered Concordant Basic Text (LNCBT) of Narcotics Anonymous as an interactive neurocommunicative and gamificated technique to generate empathic emotions through its process and application. The LNCBT is studied as an effective educational, neurocommunicational and behavioral change technique for recovery from addictions. Firstly, it was analyzed through Facial Action Coding System (FACS) using the iMotions Software. Secondly, the FACS results were also contrasted with text-based content analysis to confirm the relationship between empathic emotions and the prose contained in the LNCBT, which the subjects selected through an interactive communicative and game-based learning process: writing the numbers of their favorite sentences that they related with and sharing about them. The analyzed data suggest that LNCBT technique activates emotional empathy, including the ability of identifying through written text and verbal and nonverbal expressions. Results confirmed multiple complex emotional flow from recognizing negative emotions, at the beginning, to more positive emotions, at the end of the technique. From middle time of the technique to the last moments the research observed more balanced emotional states, once the negative experiences were recognized and shared at the beginning. At the end of the experience joy predominates (75%–85% of time) while emotions like anger or disgust tend to diminish. Finally, the text-based content analysis method found data that also suggests that the subjects, during the completion of the LNCBT technique, felt a positive emotional flow towards empathy, a collective, nonjudgmental and shared balance emotional state. The results suggest that the interactive neurocommunicative technique of LNCBT therapeutically supports recovery from the addictive process, from the isolated self-centered obsessive and compulsive emotional state towards a more empathic collective state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stewart, M., Hager, J., Ekman, P., Sejnowski, T.: Measuring facial expressions by computer image analysis. Psychophysiology 44, 253–263 (1999)

    Google Scholar 

  2. Chen, L., Yoon, S.Y., Leong, C.W., Martin, M., Ma, M.: An initial analysis of structured video interviews by using multimodal emotion detection. In: Proceedings of the 2014 Workshop on Emoion Representation and Modelling in Human-Computer-Interaction-Systems, pp. 1–6. ACM (2014)

    Google Scholar 

  3. Velásquez-Martínez, M.C., Ortiz, J.G.: Abuso de drogras, generalidades neurobiológicas y terapéuticas. Actualidades en Psicología 28(17), 21–25 (2014)

    Google Scholar 

  4. Blas, E.S.: Adicciones psicológicas y los nuevos problemas de salud. Revista Cultura, pp. 111–145 (2014)

    Google Scholar 

  5. American Psychiatric Association Diagnostic and Statistical Manual of Mental Disorders, (DSM-5), 5th edn. American Psychiatric Association, Washington (2013)

    Google Scholar 

  6. Robbins, T.W., Everitt, B.J.: Limbic-striatal memory systems and drug addiction. Neurobiol. Learn. Mem. 78(3) 625–636 (2002)

    Google Scholar 

  7. Belujon, P., Grace, A.A.: Hippocampus, amygdala, and stress: interacting systems that affect susceptibility to addiction. Ann. N.Y. Acad. Sci. 1216, 114–121 (2011)

    Google Scholar 

  8. Ding, W.N., et al.: Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with Internet gaming addiction revealed by a Go/No-Go fMRI study. Behav. Brain Funct. 10(1), 1 (2014)

    MathSciNet  Google Scholar 

  9. NIDA. Principios de tratamientos para la drogadicción: Una guía basada en las investigaciones (2010). https://www.drugabuse.gov/es/publicaciones/principios-de-tratamientos-para-la-drogadiccion. Accessed 16 Apr 2006

  10. Strang, J., et al.: Opioid use disorder. Nat. Rev. Dis. Primers 6(1), 1–28 (2020)

    Google Scholar 

  11. Damasio, A., Carvalho, G.: The nature of feelings: evolutionary and neurobilogical origins. Neurosciences 14, 143–152 (2013)

    Google Scholar 

  12. Ekman, P.: Emotions Revealed. Recognizing Faces and Feelings to Improve Communication and Emotional Life. p. 75. Estados Unidos, New York, St Martin’s Griffin (2003)

    Google Scholar 

  13. Griffiths, P.E.: Basic Emotions, Complex Emotions, Machiavellian Emotions. University of Pittsburgh, Pittsburgh (2003)

    Google Scholar 

  14. Ekman, P.: Emotions in the Human Face. Pergamon Press, New York (1972)

    Google Scholar 

  15. Charland, L.C.: Emotion as a natural kind: towards a computational foundation for emotion theory. Philos. Psychol. 8(1), 59–84 (1995)

    Google Scholar 

  16. Damasio, A.R.: Descartes Error: Emotion, Reason and the Human Brain. Grosset/Putnam, New York (1994)

    Google Scholar 

  17. Damasio, A.: Toward a neurobiology of emotion and feeling: operational concepts and hypotheses. Neuroscientist 1(1), 19–25 (1995)

    Google Scholar 

  18. Prinz, J.: Emotional Perception. Oxford University Press, Oxford

    Google Scholar 

  19. Ekman, P.: Methods for measuring facial action. In: Scherer, K.R., Ekman, P. (eds.) Handbook of Methods in Nonverbal Behavior Research, pp. 45–135. Cambridge University Press, New York (1982)

    Google Scholar 

  20. Pantic, M., Rothkrantz, J.M.: Automatic analysis of facial expressions: the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Google Scholar 

  21. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  22. Bassili, J.: Emotion recognition: the role of facial movement and the relative importance of upper and lower areas of the face. J. Pers. Soc. Psychol. 37, 2049–2059 (1979)

    Google Scholar 

  23. Lucey, P., Cohn, J.F., Kanade, T., Saragih, J., Ambadar, Z., Matthews, I.: The extended Cohn-Kande dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression. In: Third IEEE Workshop on CVPR for Human Communicative Behavior Analysis (CVPR4HB 2010) (2010)

    Google Scholar 

  24. FACET 2.0 Performance Evaluation, Emotient, iMotions software

    Google Scholar 

  25. Hellmann, A., Ang, L., Sood, S.: Towards a conceptual framework for analyzing impression management during face-to-face communication. J. Behav. Exp. Financ. 25, 100265 (2020)

    Google Scholar 

  26. Publications using iMotions Facial Expression Recognition. https://iMotions.com/publications/?page=1&category=publications&modalities=facial-expressions. Accessed 19 Feb 2020

  27. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–147 (1987)

    Google Scholar 

  28. Ekman, P., Rosenberg, E.L.: What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS). Oxford University Press, New York (1997)

    Google Scholar 

  29. Farah, M.J., Wilson, K.D., Drain, M., Tanaka, J.N.: What is ‘special’ about facial perception? Psychol. Rev. 105(3), 482–498 (1998)

    Google Scholar 

  30. Bettadapura, V.: Face expression recognition and analysis: the state of the art, Technical report, arXiv preprint:1203.6722 (2012)

    Google Scholar 

  31. Ko, B.C.: A brief review of facial emotion recognition based on visual information. Sensors 18(2), 401 (2018)

    Google Scholar 

  32. Li, D., et al.: The fusion of electroencephalography and facial expression for continuous emotion recognition. IEEE Access 7, 155724–155736 (2019)

    Google Scholar 

  33. Poria, S., Cambria, E., Winterstein, G., Huang, G.B.: Sentic patterns: dependency-based rules for concept-level sentiment analysis. Knowl.-Based Syst. 69, 45–63 (2014)

    Google Scholar 

  34. Littlewort, G., et al.: The computer expression recognition toolbox (CERT). In: 2011 IEEE International Conference on Automatic Face & Gesture Recognition and Workshops (FG 2011), pp. 298–305. IEEE (2011)

    Google Scholar 

  35. Pellegrino, R., Crandall, P.G., Seo, H.S.: Hand washing and disgust response to handling different food stimuli between two different cultures. Food Res. Int. 76, 301–308 (2015)

    Google Scholar 

  36. Wörtwein, T., Chollet, M., Schauerte, B., Morency, L.P., Stiefelhagen, R., Scherer, S.: Multimodal public speaking performance assessment. In: Proceedings of the 2015 ACM on International Conference on Multimodal Interaction, pp. 43–50 (2015)

    Google Scholar 

  37. De Kerckhove, D., Rowland, W.: Inteligencias en conexión: hacia una sociedad de la web, Gedisa (1999)

    Google Scholar 

  38. Soberón, L.: La inteligencia conectiva en la Red Informática de la Iglesia en América Latina (RIIAL). Signo y pensamiento, XXVIII, 54 (2009)

    Google Scholar 

  39. Damasio, A.: Self Comes to Mind. Pantheon Books, p. 26, New York (2010)

    Google Scholar 

  40. Ruiz Sánchez, J.M., Pedrero, E.: Neuropsicología de la Adicción. España. Editorial Médica Panamericana (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Prometheus Project, SENESCYT, secretary of Higher Education, Science, Technology & Innovation of the Republic of Ecudor, by the DIUC, Direction of Research of the University of Cuenca, through the Research Group NEUROSYNAPSIS I+D+i, School of Medicine, Universidad de Cuenca, and Research Group UNACH IAMNCEDC R+D+C+I/MANICECDE I+D+C+I, Interactive Arts & Media, Narrative Convergences & Edutainment in Digital Communications & Cultures R+D+C+I (Research+Development+Creation+Innovation), Vice-chancellor of Research, Universidad Nacional de Chimborazo, Ecuador. It also counted with the precious collaboration of the Arthur C. Clarke Center for Human Imagination, University of California San Diego, USA, and Laboratory of Digital Culture & Hypermedia Museography-Research Group Museum I+D+C, Universidad Complutense de Madrid, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Mora-Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mora-Fernandez, J., Khan, A., Estévez, F., Webster, F., Fárez, M.I., Torres, F. (2020). IMotions’ Automatic Facial Recognition & Text-Based Content Analysis of Basic Emotions & Empathy in the Application of the Interactive Neurocommunicative Technique LNCBT (Line & Numbered Concordant Basic Text). In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Communication, Organization and Work. HCII 2020. Lecture Notes in Computer Science(), vol 12199. Springer, Cham. https://doi.org/10.1007/978-3-030-49907-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49907-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49906-8

  • Online ISBN: 978-3-030-49907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics