Skip to main content

Contributions of Training Programs Supported by VR Techniques to the Prevention of STF Accidents

  • 1072 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 12198)

Abstract

Occupational safety and health (OSH) is active at all levels of the hierarchy of controls to prevent accidents associated with slips, trips and falls (STF). Training programs related to STF prevention are increasingly supported by virtual reality (VR) techniques. A review revealed a wide range of applications in practical and scientific areas. Trainings for operational practice vary regarding objectives, target groups, application contexts, media, and effectiveness, if available. Trainings in scientific studies are well designed for specific purposes at hand, but not suitable for direct application in operational practice. Research is required to bridge the gap. An investigation on gait stability and control in a VR-based obstacle avoidance training scenario has been conducted to contribute to developments in STF prevention. Initial results indicated a high level of presence and no evidence for detrimental effects on body and gait stability through application of VR techniques. This provides a sound basis for analysis of other data still required and for guiding similar and subsequent studies along knowledge gained by training programs available.

Keywords

  • Behavioral training
  • Gait perturbation
  • Virtual reality
  • Slip, trip, and fall hazards
  • Occupational safety and health

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-49904-4_20
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-49904-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.

References

  1. DGUV: Statistik. Arbeitsunfallgeschehen 2018. Deutsche Gesetzliche Unfallversicherung (DGUV), Berlin (2019). https://publikationen.dguv.de/widgets/pdf/download/article/3680

  2. Lehto, M.R., Cook, B.T.: Occupational health and safety management. In: Salvendy, G. (ed.) Handbook of Human Factors and Ergonomics, pp. 701–733. Wiley, Hoboken (2012)

    Google Scholar 

  3. EU OSH Framework Directive 89/391/EEC of 12 June 1989 on the introduction of measures to encourage improvements in the safety and health of workers at work (with amendments 2008). Official Journal of the European Union L 183, 29/06/1989, pp. 1–8 (2008)

    Google Scholar 

  4. Simeonov, P.: Fall risk associated with restricted and elevated support surfaces. In: Hsiao, H. (ed.) Fall Prevention and Protection: Principles, Guidelines, and Practices, pp. 119–140. CRC Press, Boca Raton (2017)

    Google Scholar 

  5. Simpson, B.D., Cowgill, J.L., Gilkey, R.H., Weisenberger, J.M.: Technological considerations in the design of multisensory virtual environments: How real does it need to be? In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 313–333. CRC Press, Boca Raton (2015)

    Google Scholar 

  6. Champney, R.K., Carroll, M., Surpris, G., Cohn, J.: Conducting training transfer studies in virtual environments. In: Hale, K.S., Stanney, K.M. (eds.) Handbook of Virtual Environments: Design, Implementation, and Applications, pp. 781–795. CRC Press, Boca Raton (2015)

    Google Scholar 

  7. Gordon, D., Robertson, E., Caldwell, G.E., Hamill, J., Kamen, G., Whittlesey, S.N. (eds.): Research Methods in Biomechanics. Human Kinetics, Champaign (2014)

    Google Scholar 

  8. Sheik-Nainar, M.A., Kaber, D.B.: The utility of a virtual reality locomotion interface for studying gait behavior. Hum. Factors 49(4), 696–709 (2007)

    CrossRef  Google Scholar 

  9. Arnold, R.: Assisted Learning. A Workbook. Bildungstransfer Verlag, Landau (2010)

    Google Scholar 

  10. Safety in a Box. www.worksafetexas.com/videos/safety-in-a-box.aspx. Accessed 30 Jan 2020

  11. Plonsker, T.: Lernen in und mit virtuellen Welten. DGUV Forum 4, 36–37 (2019)

    Google Scholar 

  12. DGUV Forum. https://www.dguv-forum.de/files/594/19-50-035_DGUV_Forum_4_2019_screen.pdf. Accessed 30 Jan 2020

  13. Safety and health at work. www.healthandsafetyatwork.com/feature/working-height-safety-london-office-block. Accessed 15 Dec 2019

  14. American Society of Safety Professionals. www.assp.org/news-and-articles/2018/07/10/using-virtual-reality-as-a-fall-protection-training-tool. Accessed 30 Jan 2020

  15. Savannah River Site. www.energy.gov/em/articles/srs-liquid-waste-contractor-uses-virtual-reality-slips-trips-and-falls-training. Accessed 30 Jan 2020

  16. BGHW: In diesem Lkw steckt was drin. BGHW aktuell, vol. 3, pp. 18–21 (2019)

    Google Scholar 

  17. BGHW. https://www.bghw.de/medien/bghw-aktuell-die-zeitschrift-fuer-mitgliedsbetriebe/bghw-aktuell-03-19/bghw-aktuell-3-19. Accessed 30 Jan 2020

  18. VR Health and Safety Training. www.virtualrealityexps.com/vr-health-and-safety/. Accessed 30 Jan 2020

  19. IBEW. www.bitspacedevelopment.com/ibew-slips-trips-falls/. Accessed 15 Jan 2020

  20. EdgVR. www.edg-vr.com/. Accessed 15 Jan 2020

  21. Giotakos, O., Tsirgogianni, K., Tarnanas, I.: A virtual reality exposure therapy (VRET) scenario for the reduction of fear of falling and balance rehabilitation training of elder adults with hip fracture history. Virtual Rehabil., 155–158 (2007). https://doi.org/10.1109/icvr.2007.4362157

  22. Parijat, P., Lockhart, T.E., Liu, J.: Effects of perturbation-based slip training using a virtual reality environment on slip-induced falls. Ann. Biomed. Eng. 43(4), 958–967 (2014). https://doi.org/10.1007/s10439-014-1128-z

    CrossRef  Google Scholar 

  23. Parijat, P., Lockhart, T.E., Liu, J.: EMG and kinematic responses to unexpected slips after slip training in virtual reality. IEEE Trans. Biomed. Eng. 62(2), 593–599 (2015). https://doi.org/10.1109/tbme.2014.2361324

    CrossRef  Google Scholar 

  24. Riem, L., Van Dehy, J., Onushko, T., Beardsley, S.: Inducing compensatory changes in gait similar to external perturbations using an immersive head mounted display. In: Proceedings of the 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 128–135 (2018). https://doi.org/10.1109/vr.2018.8446432

  25. Menegoni, F., et al.: Walking in an immersive virtual reality. In: Annual Review of Cybertherapy and Telemedicine. Studies in Health Technology and Informatics, vol. 144, pp. 72–76 (2009). https://doi.org/10.3233/978-1-60750-017-9-72

  26. Martelli, D., Xia, B., Prado, A., Agrawal, S.K.: Gait adaptations during overground walking and multidirectional oscillations of the visual field in a virtual reality headset. Gait Posture 67, 251–256 (2019). https://doi.org/10.1016/j.gaitpost.2018.10.029

    CrossRef  Google Scholar 

  27. Liu, J., Lockhart, T., Parijat, P., McIntosh, J.D., Chiu, Y.P.: Comparison of slip training in VR environment and on moveable platform. In: 52nd Annual Rocky Mountain Bioengineering Symposium and 52nd International ISA Biomedical Sciences Instrumentation Symposium 2015, pp. 192–200. International Society of Automation (ISA) (2015)

    Google Scholar 

  28. Peterson, S.M., Rios, E., Ferris, D.P.: Transient visual perturbations boost short-term balance learning in virtual reality by modulating electrocortical activity. J. Neurophysiol. 120(4), 1998–2010 (2018). https://doi.org/10.1152/jn.00292.2018

    CrossRef  Google Scholar 

  29. Nyberg, L., et al.: Using a virtual reality system to study balance and walking in a virtual outdoor environment: a pilot study. Cyberpsychol. Behav. 9(4), 388–395 (2006). https://doi.org/10.1089/cpb.2006.9.388

    CrossRef  Google Scholar 

  30. Kim, A., Schweighofer, N., Finley, J.M.: Locomotor skill acquisition in virtual reality shows sustained transfer to the real world. J. Neuroeng. Rehabil. 16(1), 113–123 (2019). https://doi.org/10.1186/s12984-019-0584-y

    CrossRef  Google Scholar 

  31. Kennedy, R.S., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    CrossRef  Google Scholar 

  32. Pfendler, C., Thun, J.: Der Simulator Sickness Questionnaire von Kennedy et al. (1993) und seine rechnergestützte Version (Technischer Bericht). Forschungsinstitut für Kommunikation, Informationsverarbeitung und Ergonomie (FKIE), Wachtberg (2001)

    Google Scholar 

  33. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence 7(3), 225–240 (1998)

    CrossRef  Google Scholar 

  34. Witmer, B.G., Jerome, C.J., Singer, M.J.: The factor structure of the presence questionnaire. Presence 14(3), 298–312 (2005)

    CrossRef  Google Scholar 

  35. Hart, S.G., Staveland, L.E.: Development of the NASA task load index (TLX): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, pp. 139–183. North-Holland, Amsterdam (1988)

    CrossRef  Google Scholar 

  36. Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the 41st Annual Meeting of the Human Factors and Ergonomics Society (HFES 1997), Albuquerque, San Diego, 22–26 September 1997, pp. 1138–1142 (1997)

    Google Scholar 

  37. Weber, A., Nickel, P., Hartmann, U., Friemert, D., Karamanidis, K.: Capture of stability and coordination indicators in virtual training scenarios for the prevention of slip, trip, and fall (STF) accidents. In: Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 210–219. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22216-1_16

    CrossRef  Google Scholar 

  38. Weber, A., et al.: A virtual reality obstacle avoidance task leads to limb-specific locomotor adaptations but not interlimb transfer. Manuscript under preparation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anika Weber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Weber, A., Nickel, P., Hartmann, U., Friemert, D., Karamanidis, K. (2020). Contributions of Training Programs Supported by VR Techniques to the Prevention of STF Accidents. In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Posture, Motion and Health. HCII 2020. Lecture Notes in Computer Science(), vol 12198. Springer, Cham. https://doi.org/10.1007/978-3-030-49904-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49904-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49903-7

  • Online ISBN: 978-3-030-49904-4

  • eBook Packages: Computer ScienceComputer Science (R0)