Skip to main content

Parameter Determination of Metamaterials in Generalized Mechanics as a Result of Computational Homogenization

  • Conference paper
  • First Online:
Advanced Problems in Mechanics (APM 2019)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

As the length scale starts decreasing such that the inner substructure of the material becomes dominant in material response, the well-known theory of elasticity shows inadequacies. As a remedy, generalized mechanics is proposed leading to additional, inner substructure related parameters to be determined. In order to acquire them, for a so-called metamaterial with known substructure and material response in the length scale of the substructure, we present how to apply a computational approach based on the finite element method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abali, B.E.: Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, vol. 55. Springer Nature, Singapore (2017)

    Google Scholar 

  • Abali, B.E.: Revealing the physical insight of a length-scale parameter in metamaterials by exploiting the variational formulation. Continuum Mechanics and Thermodynamics, pp. 1–10 (2018)

    Google Scholar 

  • Abali, B.E., Müller, W.H.: Numerical solution of generalized mechanics based on a variational formulation. Oberwolfach Rep. Mech. Mater. Mech. Interfaces Evolving Microstr. 17(1), 9–12 (2016)

    Google Scholar 

  • Abali, B.E., Müller, W.H., Eremeyev, V.A.: Strain gradient elasticity with geometric nonlinearities and its computational evaluation. Mech. Adv. Mater. Modern Process. 1(1), 1–11 (2015)

    Google Scholar 

  • Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)

    Google Scholar 

  • Abali, B.E., Yang, H., Papadopoulos, P.: A computational approach for determination of parameters in generalized mechanics. In: Abali, B.E., Altenbach, H., Müller, W.H. (eds.) Higher Gradient Materials and Related Generalized Continua, chap. 1, pp. 1–18. Springer Nature, Singapore (2019)

    Google Scholar 

  • Abdoul-Anziz, H., Seppecher, P.: Strain gradient and generalized continua obtained by homogenizing frame lattices. Math. Mech. Compl. Syst. 6(3), 213–250 (2018)

    MathSciNet  MATH  Google Scholar 

  • Alnaes, M.S., Logg, A., Mardal, K.A., Skavhaug, O., Langtangen, H.P.: Unified framework for finite element assembly. Int. J. Comput. Sci. Eng. 4(4), 231–244 (2009)

    Google Scholar 

  • Barboura, S., Li, J.: Establishment of strain gradient constitutive relations by using asymptotic analysis and the finite element method for complex periodic microstructures. Int. J. Solids Struct. 136, 60–76 (2018)

    Google Scholar 

  • Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  • Bigoni, D., Drugan, W.: Analytical derivation of cosserat moduli via homogenization of heterogeneous elastic materials. J. Appl. Mech. 74(4), 741–753 (2007)

    MathSciNet  Google Scholar 

  • Chen, C., Pei, Y., De Hosson, J.T.M.: Effects of size on the mechanical response of metallic glasses investigated through in situ tem bending and compression experiments. Acta Mater. 58(1), 189–200 (2010)

    Google Scholar 

  • Chung, P.W., Tamma, K.K., Namburu, R.R.: Asymptotic expansion homogenization for heterogeneous media: computational issues and applications. Compos. Appl. Sci. Manuf. 32(9), 1291–1301 (2001)

    Google Scholar 

  • dell’Isola, F., Seppecher, P., Alibert, J.J., Lekszycki, T., Grygoruk, R., Pawlikowski, M., Steigmann, D., Giorgio, I., Andreaus, U., Turco, E., et al.: Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mechanics and Thermodynamics, pp. 1–34 (2018)

    Google Scholar 

  • dell’Isola, F., Turco, E., Misra, A., Vangelatos, Z., Grigoropoulos, C., Melissinaki, V., Farsari, M.: Force-displacement relationship in micro-metric pantographs: experiments and numerical simulations. Comptes Rendus Mécanique 347(5), 397–405 (2019)

    Google Scholar 

  • Dormieux, L., Kondo, D., Ulm, F.J.: Microporomechanics. Wiley, Chichester (2006)

    MATH  Google Scholar 

  • Eremeyev, V.A.: On effective properties of materials at the nano-and microscales considering surface effects. Acta Mech. 227(1), 29–42 (2016)

    MathSciNet  MATH  Google Scholar 

  • Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  • Eringen, A.: Mechanics of micromorphic continua. In: Kröner, E. (ed.) Mechanics of Generalized Continua, pp. 18–35. Springer, Berlin (1968)

    Google Scholar 

  • Eringen, A., Suhubi, E.: Nonlinear theory of simple micro-elastic solids. Int. J. Eng. Sci. 2, 189–203 (1964)

    MathSciNet  MATH  Google Scholar 

  • Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. In: Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, pp. 376–396 (1957)

    Google Scholar 

  • Forest, S., Dendievel, R., Canova, G.R.: Estimating the overall properties of heterogeneous cosserat materials. Modell. Simul. Mater. Sci. Eng. 7(5), 829 (1999)

    Google Scholar 

  • Forest, S., Pradel, F., Sab, K.: Asymptotic analysis of heterogeneous cosserat media. Int. J. Solids Struct. 38(26–27), 4585–4608 (2001)

    MathSciNet  MATH  Google Scholar 

  • Ganghoffer, J., Goda, I., Novotny, A., Rahouadj, R., Sokolowski, J.: Homogenized couple stress model of optimal auxetic microstructures computed by topology optimization. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 98(5), 696–717 (2018)

    MathSciNet  Google Scholar 

  • Ganzosch, G., Hoschke, K., Lekszycki, T., Giorgio, I., Turco, E., Müller, W.H.: 3d-measurements of 3d-deformations of pantographic structures. Technische Mechanik 38(3), 233–245 (2018)

    Google Scholar 

  • Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Zeitschrift für angewandte Mathematik und Physik 67(4), 95 (2016)

    MathSciNet  MATH  Google Scholar 

  • Greco, L., Cuomo, M., Contrafatto, L.: Two new triangular g1-conforming finite elements with cubic edge rotation for the analysis of Kirchhoff plates. Comput. Methods Appl. Mech. Eng. 356, 354–386 (2019)

    MATH  Google Scholar 

  • Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R., Arzt, E.: Size effects on yield strength and strain hardening for ultra-thin Cu films with and without passivation: a study by synchrotron and bulge test techniques. Acta Mater. 56(10), 2318–2335 (2008)

    Google Scholar 

  • Harrison, P., Taylor, E., Alsayednoor, J.: Improving the accuracy of the uniaxial bias extension test on engineering fabrics using a simple wrinkle mitigation technique. Compos. A Appl. Sci. Manuf. 108, 53–61 (2018)

    Google Scholar 

  • Hashin, Z.: The spherical inclusion with imperfect interface. J. Appl. Mech. 58(2), 444–449 (1991)

    Google Scholar 

  • Hashin, Z., Shtrikman, S.: On some variational principles in anisotropic and nonhomogeneous elasticity. J. Mech. Phys. Solids 10(4), 335–342 (1962)

    MathSciNet  MATH  Google Scholar 

  • Hollister, S.J., Kikuchi, N.: A comparison of homogenization and standard mechanics analyses for periodic porous composites. Comput. Mech. 10(2), 73–95 (1992)

    MATH  Google Scholar 

  • Ivanova, E.A., Vilchevskaya, E.N.: Micropolar continuum in spatial description. Continuum Mech. Thermodyn. 28(6), 1759–1780 (2016)

    MathSciNet  MATH  Google Scholar 

  • Kanaun, S., Kudryavtseva, L.: Spherically layered inclusions in a homogeneous elastic medium. J. Appl. Math. Mech. 50(4), 483–491 (1986)

    MathSciNet  MATH  Google Scholar 

  • Kochmann, D.M., Venturini, G.N.: Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity. Smart Mater. Struct. 22(8), 084, 004 (2013)

    Google Scholar 

  • Kushnevsky, V., Morachkovsky, O., Altenbach, H.: Identification of effective properties of particle reinforced composite materials. Comput. Mech. 22(4), 317–325 (1998)

    MATH  Google Scholar 

  • Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    MATH  Google Scholar 

  • Lebensohn, R., Liu, Y., Castaneda, P.P.: On the accuracy of the self-consistent approximation for polycrystals: comparison with full-field numerical simulations. Acta Mater. 52(18), 5347–5361 (2004)

    Google Scholar 

  • Levin, V.: Determination of composite material elastic and thermoelastic constants. Mech. Solids 11(6), 119–126 (1976)

    Google Scholar 

  • Li, J.: Establishment of strain gradient constitutive relations by homogenization. Comptes Rendus Mécanique 339(4), 235–244 (2011)

    MATH  Google Scholar 

  • Logg, A., Mardal, K.A., Wells, G.: Automated solution of differential equations by the finite element method: The FEniCS book, vol. 84. Springer Science & Business Media (2012)

    Google Scholar 

  • Mandadapu, K.K., Abali, B.E., Papadopoulos, P.: On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:180802540 (2018)

  • McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15(5), 1060–1067 (2005)

    Google Scholar 

  • Mindlin, R.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  • Misra, A., Lekszycki, T., Giorgio, I., Ganzosch, G., Müller, W.H., Dell’Isola, F.: Pantographic metamaterials show atypical poynting effect reversal. Mech. Res. Commun. 89, 6–10 (2018)

    Google Scholar 

  • Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21(5), 571–574 (1973)

    Google Scholar 

  • Namazu, T., Isono, Y., Tanaka, T.: Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using afm. J. Microelectromech. Syst. 9(4), 450–459 (2000)

    Google Scholar 

  • Nazarenko, L.: Elastic properties of materials with ellipsoidal pores. Int. Appl. Mech. 32(1), 46–52 (1996)

    MATH  Google Scholar 

  • Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium. Continuum Mech. Thermodyn. 9(5), 241–257 (1997)

    MathSciNet  MATH  Google Scholar 

  • Pietraszkiewicz, W., Eremeyev, V.: On natural strain measures of the non-linear micropolar continuum. Int. J. Solids Struct. 46(3), 774–787 (2009)

    MathSciNet  MATH  Google Scholar 

  • Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2d fabric sheet with inextensible fibres. Zeitschrift für angewandte Mathematik und Physik 67(5), 114 (2016)

    MathSciNet  MATH  Google Scholar 

  • Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia-part i: Constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013a)

    Google Scholar 

  • Polizzotto, C.: A second strain gradient elasticity theory with second velocity gradient inertia-part ii: Dynamic behavior. Int. J. Solids Struct. 50(24), 3766–3777 (2013b)

    Google Scholar 

  • Rahali, Y., Giorgio, I., Ganghoffer, J., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

    MathSciNet  MATH  Google Scholar 

  • Reuss, A.: Berechnung der Fließgrenze von Mischkristallen auf grund der Plastizitätsbedingung für Einkristalle. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 9(1), 49–58 (1929)

    MATH  Google Scholar 

  • Sburlati, R., Cianci, R., Kashtalyan, M.: Hashin’s bounds for elastic properties of particle-reinforced composites with graded interphase. Int. J. Solids Struct. 138, 224–235 (2018)

    Google Scholar 

  • Seppecher, P., Alibert, J.J., dell’Isola, F.: Linear elastic trusses leading to continua with exotic mechanical interactions. In: Journal of Physics: Conference Series, IOP Publishing, vol. 319, p. 012018 (2011)

    Google Scholar 

  • Shafiro, B., Kachanov, M.: Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes. J. Appl. Phys. 87(12), 8561–8569 (2000)

    Google Scholar 

  • Solyaev, Y., Lurie, S., Ustenko, A.: Numerical modeling of a composite auxetic metamaterials using micro-dilatation theory. Continuum Mechanics and Thermodynamics, pp. 1–9 (2018)

    Google Scholar 

  • Spagnuolo, M., Andreaus, U.: A targeted review on large deformations of planar elastic beams: extensibility, distributed loads, buckling and post-buckling. Math. Mech. Solids 24(1), 258–280 (2019)

    MathSciNet  MATH  Google Scholar 

  • Steinmann, P.: A micropolar theory of finite deformation and finite rotation multiplicative elastoplasticity. Int. J. Solids Struct. 31(8), 1063–1084 (1994)

    MathSciNet  MATH  Google Scholar 

  • Temizer, I.: On the asymptotic expansion treatment of two-scale finite thermoelasticity. Int. J. Eng. Sci. 53, 74–84 (2012)

    MathSciNet  MATH  Google Scholar 

  • Turco, E.: How the properties of pantographic elementary lattices determine the properties of pantographic metamaterials. In: Abali, B., Altenbach, H., dell’Isola, F., Eremeyev, V., Öchsner, A. (eds.) New Achievements in Continuum Mechanics and Thermodynamics, Advanced Structured Materials, vol. 108, pp. 489–506. Springer, Cham (2019)

    Google Scholar 

  • Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. B Eng. 118, 1–14 (2017)

    Google Scholar 

  • Turco, E., Misra, A., Sarikaya, R., Lekszycki, T.: Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling. Continuum Mech. Thermodyn. 31(1), 209–223 (2019)

    MathSciNet  Google Scholar 

  • Willis, J.: Bounds and self-consistent estimates for the overall properties of anisotropic composites. J. Mech. Phys. Solids 25(3), 185–202 (1977)

    MATH  Google Scholar 

  • Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Zeitschrift für angewandte Mathematik und Physik 69(4), 105 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilen Emek Abali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abali, B.E., Yang, H. (2020). Parameter Determination of Metamaterials in Generalized Mechanics as a Result of Computational Homogenization. In: Indeitsev, D., Krivtsov, A. (eds) Advanced Problems in Mechanics. APM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-49882-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49882-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49881-8

  • Online ISBN: 978-3-030-49882-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics